Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Optimization of Thermal Annealing Effect on Sol-Gel Driven SpinCoated CdS Thin Films

Abstract

Semiconducting nanostructured materials are preferred for optoelectronic devices due to their variable optical and electrical properties. Cadmium sulfide (CdS) thin films, due to its direct band gap, are widely used in solar cells, photodetectors, photosensors, etc. This work analyzes the effect of thermal annealing on the optical and structural properties of CdS thin films. CdS thin films are synthesized by a sol-gel spin coating technique while maintaining a constant pH level of the precursor solution. CdS thin films were annealed at 400, 450, and 500o C for 30, 60, and 90 min, respectively. The transmittance of the films varied from 60–89% in the visible region as evident from the UV analysis. The optical band gap lay in the range of 2.43–2.47 eV. The XRD and Raman analysis results reveal that the crystallinity of the CdS thin film increased with the increasing annealing temperature and time of annealing.

About the Authors

R. Aggarwal
Lovely Professional University
India

Department of Physics, 

Phagwara



R. Kumar
Lovely Professional University
India

Department of Physics, 

Phagwara



References

1. M. A. Islam, M. S. Hossain, M. M. Aliyu, P. Chelvanathan, Q. Huda, M. R. Karim, K. Sopian, N. Amin, Energy Proc., 33, 203–213 (2013), https://doi.org/10.1016/j.egypro.2013.05.059.

2. M. G. Faraj, M. H. Eisa, M. Z. Pakhuruddin, Int. J. Electrochem. Sci., 14, 10633–10641 (2019), https://doi.org/10.20964/2019.11.11.

3. B. Barman, K. V. Bangera, G. K. Shivakumar, Superlattices Microstruct., 137, 106349 (2020), https://doi.org/10.1016/j.spmi.2019.106349.

4. S. S. Yesilkaya, U. Ulutas, H. M. A. Alqader, Mater. Lett., 288, 129347 (2021), https://doi.org/10.1016/j.matlet.2021.129347.

5. N. Chodavadiya, A. Chapanari, J. Zinzala, J. Ray, S. Pandya, AIP Conf. Proc., 1961 (2018), https://doi.org/10.1063/1.5035207.

6. T. Gao, Q. H. Li, T. H. Wang, Appl. Phys. Lett., 86, 1–3 (2005), https://doi.org/10.1063/1.1915514.

7. H. Metin, R. Esen, Semicond. Sci. Technol., 18, 647–654 (2003), https://doi.org/10.1088/0268-1242/18/7/308.

8. K. H. Za, M. B. Mohamed, N. Y. Mostafa, Appl. Phys. A: Mater. Sci. Proc., 125, 1–12 (2019), https://doi.org/10.1007/s00339-019-2428-9.

9. M. Shkir, I. M. Ashraf, K. V. Chandekar, I. S. Yahia, A. Khan, H. Algarni, S. Al Faify, Sensors Actuators A: Phys., 301, 111749 (2020), https://doi.org/10.1016/j.sna.2019.111749.

10. D. Wu, Y. Jiang, Y. Zhang, Y. Yu, Z. Zhu, X. Lan, F. Li, C. Wu, L. Wang, L. Luo, J. Mater. Chem., 22, 23272–23276 (2012), https://doi.org/10.1039/c2jm34869a.

11. S. G. Pandya, Int. J. Recent Sci. Res., 7, 14887–14890 (2016).

12. M. T. Chowdhury, M. A. Zubair, H. Takeda, K. M. A. Hussain, M. F. Islam, AIMS Mater. Sci., 4, 1095–1121 (2017), https://doi.org/10.3934/matersci.2017.5.1095.

13. V. Vinayakumar, S. Shaji, D. Avellaneda, J. A. Aguilar-Martínez, B. Krishnan, RSC Adv., 8, 31055–31065 (2018), https://doi.org/10.1039/C8RA05662E.

14. H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, Appl. Surf. Sci., 255, 4129–4134 (2009), https://doi.org/10.1016/j.apsusc.2008.10.115.

15. C. Doroody, K. S. Rahman, H. N. Rosly, M. N. Harif, M. Isah, Y. B. Kar, S. K. Tiong, N. Amin, Mater. Sci. Semicond. Proc., 133, 105935 (2021), https://doi.org/10.1016/j.mssp.2021.105935.

16. P. R. Pattnaik, S. K. Bhuyan, Compositional and Electrical Properties of Vacuum Evaporation Process of CdS Thin Films, 7, 1–4 (2019).

17. S. V. Borse, S. D. Chavhan, R. Sharma, J. Alloys Compd., 436, 407–414 (2007), https://doi.org/10.1016/j.jallcom.2006.11.009.

18. L. S. Ravangave, R. B. Mahewar, IOSR J. Eng., 05, 6–8 (2015).

19. J. Hiie, T. Dedova, V. Valdna, K. Muska, Thin Solid Films, 511-512, 443–447 (2006), https://doi.org/10.1016/j.tsf.2005.11.070.

20. N. K. Morozova, A. A. Kanakhin, I. N. Miroshnikova, V. G. Galstyan, Semiconductors, 47, 1018–1025 (2013), https://doi.org/10.1134/S1063782613080149.

21. S. R. Gosavi, C. P. Nikam, A. R. Shelke, A. M. Patil, S. W. Ryu, J. S. Bhat, N. G. Deshpande, Mater. Chem. Phys., 160, 244–250 (2015), https://doi.org/10.1016/j.matchemphys.2015.04.031.

22. M. D. Devi, A. V. Juliet, K. Hari Prasad, T. Alshahrani, A. M. Alshehri, M. Shkir, S. AI Faify, Appl. Phys. A: Mater. Sci. Proc., 126, 1–11 (2020), https://doi.org/10.1007/s00339-020-04067-3.

23. R. Cuscó, J. Ibáñez, N. Domenech-Amador, L. Artús, J. Zúiga-Ṕrez, V. Muoz-Sanjoś, J. Appl. Phys., 107 (2010), https://doi.org/10.1063/1.3357377.

24. A. Abdolahzadeh Ziabari, F. E. Ghodsi, Sol. Energy Mater. Sol. Cells, 105, 249–262 (2012), https://doi.org/10.1016/j.solmat.2012.05.014.


Review

For citations:


Aggarwal R., Kumar R. Optimization of Thermal Annealing Effect on Sol-Gel Driven SpinCoated CdS Thin Films. Zhurnal Prikladnoii Spektroskopii. 2024;91(1):171.

Views: 89


ISSN 0514-7506 (Print)