Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

INVESTIGATION OF CODY-LORENTZ AND TAUC-LORENTZ MODELS IN CHARACTERIZING DIELECTRIC FUNCTION OF (HfO2)x(ZrO2)1-x MIXED THIN FILM

Abstract

In the present study, Tauc-Lorentz and Urbach tail assisted Cody-Lorentz models were intuitively derived, explained, and employed to simulate the imaginary dielectric function of the atomic layer deposited (HfO2)x(ZrO2)1-x in the energy range of 0.7-9.3 eV. A fitting procedure is carried out using the Levenberg-Marquardt method for minimizing mean square errors. Both models support the experimental data derived by vacuum ultraviolet spectroscopic ellipsometry. For a zirconium content of 60 and 75%, a weak absorption profile is observed in the visible region and elaborately explained by the Lorentz oscillator model. In order to calculate the band gap of different compositions, Cody plots and Tauc plots are presented. The results show that the Cody-Lorentz model is more accuracy due to its exponential absorption below the band gap energy and modified density of states.

About the Authors

H. . Shahrokhabadi
K. N. Toosi University of Technology
Russian Federation


A. . Bananej
Laser and Optics Research Institute
Russian Federation


M. . Vaezzadeh
K. N. Toosi University of Technology
Russian Federation


References

1. N. K. Sahoo, A. P. Shapiro, Appl. Opt., 37, 698-718 (1998).

2. M. W. Louie, A. T. Bell, J. Am. Chem. Soc., 135, 12329-12337 (2013).

3. F. Brivio, A. B. Walker, A. Walsh, APL Mater., 1, 042111 (2013).

4. B. J. Pond, J. I. DeBar, C. K. Carniglia, T. Raj, Appl. Opt., 28, 2800-2805 (1989).

5. S. P. R. Willmott, Prog. Surf. Sci.,76, 163-217 (2004).

6. E. Bobeico, F. Varsano, C. Minarini, F. Roca, Thin Solid Films, 444, 70-74 (2003).

7. V. Janicket, D. Gäbler, S. Wilbrandt, R. Leitel, O. Stenzel, N. Kaiser, M. Lappschies, B. Görtz, D. Ristau, C. Rickers, M. Vergöhl, Appl. Opt., 45, 7851-7857 (2006).

8. M. Bonvalot, M. Kahn, C. Vallée, E. Gourvest, H. Abed, C. Jorel, C. Dubourdieu, Thin Solid Films, 518, 5057-5060 (2010).

9. O. Stenzel, Optical Coatings: Material Aspects in Theory and Practice, Springer Series in Surface Science, Springer, Berlin, Heidelberg, 21-55 (2014).

10. O. Stenzel, The Physics of Thin Film Optical Spectra An Introduction, Springer Series in Surface Science, Springer, Berlin, Heidelberg, 178-229 (2005).

11. J. F. McGilp, Prog. Surf. Sci., 49, 1-106 (1995).

12. M. Mulato, I. Chambouleyron, E. G. Birgin, J. M. Martinez, Appl. Phys. Lett., 77, 2133-2135 (2000).

13. J. A. Dobrowolski, F. C. Ho, A. Waldrof, Appl. Opt., 22, 3191-3200 (1983). 838-8

14. S. Jena, R.B. Tokas, N. Kamble, S. Thakur, D. Bhattacharyya, N. K. Sahoo, Thin Solid Films, 537, 163-170 (2013).

15. R. Swanepoel, J. Phys. E, 16, No. 12 (1983).

16. A. Bananej, A. Hassanpour, H. Razzaghi, M. Vaez zade, A. Mohammadi, Opt. Laser Technol., 42, 1187-1192 (2010).

17. Amir Hassanpour, Alireza Bananej, Optik, 124, 35-39 (2013).

18. C. C. Kim, J. W. Garland, H. Abad, P. M. Raccah, Phys. Rev. B, 45, No. 20, 11749 (1992).

19. B. Tatian, Appl. Opt., 23, 4477-4485 (1984).

20. P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, G. Kordas, Thin Solid Films, 323, 188-193 (1998).

21. R. Brendel, D. Bormann, J. Appl. Phys., 71, 1-6 (1992).

22. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, Appl. Opt., 51, 6789-6798 (2012).

23. M. Landmann, T. Köhler, S. Köppen, E. Rauls, T. Frauenheim, W. G. Schmidt, Phys. Rev. B, 86, 064201-1-064201-20 (2012).

24. R. Zallen, The Physics of Amorphous Solids, Wiley, New York, 252-297 (1983).

25. N. F. Mott, E. A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, 199-320 (1971).

26. G. A. N. Connell, Top. Appl. Phys., 36, 73-87 (1979).

27. D. E. Aspnes, Thin Solid Films, 89, 249-262 (1982).

28. A.R. Forouhi, I. Bloomer, Phys. Rev. B, 34, 7018-7026 (1986).

29. M. Kildemo, R. Ossikovski, M. Stchakovsky, Thin Solid Films, 313, 108-113 (1998).

30. G. E. Jellison, F. A. Modine, Appl. Phys. Lett., 69, 371-373 (1996).

31. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi, 15, 627-637 (1966).

32. J. Orava, T. Wágner, J. Šik, J. Přikry, M. Frumar, L. Beneš, J. Appl. Phys., 104 (4), 043523 (2008).

33. J. Price, P. Y. Hung, T. Rhoad, B. Foran, A. C. Diebold, Appl. Phys. Lett., 85, 1701 (2004).

34. G. D. Cody, Semiconduct Semimet., 21, pt B (1984).

35. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, G. Ganguly, J. Appl. Phys., 92, No. 5, 2424 (2002).

36. F. Urbach, Phys. Rev., 92, No. 5, 1324 (1953).

37. J. D. Dow, D. Redfield, Phys. Rev. B, 5, No. 2, 594 (1972).

38. D. H. Triyoso, R. I. Hegde, J. K. Schaeffer, R. Gregory, X. D. Wang, M. Canonico, D. Roan, E. A. Hebert, K. Kim, J. Jiang, R. Rai, J. Vac. Sci. Technol. B, 25, 845-852 (2007).

39. J. Robertson, Rep. Prog. Phys., 69, No. 2, 327 (2005).

40. S. Gopalan, K. Onishi, R. Nieh, C.S. Kang, R. Choi, H.J. Cho, S. Krishnan, J. C. Lee, Appl. Phys. Lett., 80, 4416-4418 (2002).

41. S. V. Elshocht, U. Weher, T. Conard, V. Kaushik, M. Houssa, S. Hyun, B. Seitzinger, P. Lehnen, M. Schu-macher, J. Lindner, M. Caymax, J. Electrochem. Soc., 152, No. 11, F185 (2005).

42. M. Houssa, C. Bizzari, J. M. Autran, Appl. Phys. Lett., 83, 5065 (2003).

43. H. Huag, S. W. Kokh, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed., World Scientific Publishing, Singapore (2004), pp. 1-30.

44. C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, New York, 161-185 (2004).

45. S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, Phys. Rev. B, 35 (15), 8113 (1987).

46. L. Van Hove, Phys. Rev., 89, 1189 (1953).

47. J. M. Pawlikowski, J. Misiewicz, N. Mirowska, J. Phys. Chem. Sol., 40, 1027-1033 (1979).

48. B. Rafferty, L. M. Brown, Phys. Rev. B, 58, No. 16, 10326 (1998).

49. V. G. Plekhanov, Phys. Rev. B, 54, No. 6, 3869 (1996).

50. A. D'Andrea R. Del Sole, Phys. Rev. B, 25, No. 6, 3714 (1982).

51. J. J. Moré, Lect. Notes Math., 630, 105-116 (2006).

52. W. Hayes, A. M. Stoneham, Defect and Defect Processes in Nonmetallic Solids, Courier Corporation, 227-289 (1985).

53. W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, S.-J. Oh, Phys. Rev. B, 31, No. 8, 5187 (1985).

54. B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, Opt. Lett., 37, 1478-1480 (2012).


Review

For citations:


Shahrokhabadi H., Bananej A., Vaezzadeh M. INVESTIGATION OF CODY-LORENTZ AND TAUC-LORENTZ MODELS IN CHARACTERIZING DIELECTRIC FUNCTION OF (HfO2)x(ZrO2)1-x MIXED THIN FILM. Zhurnal Prikladnoii Spektroskopii. 2017;84(5):838(1)-838(8). (In Russ.)

Views: 399


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)