Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Luminescent Thermometry (Y1–xEr x) 2O3 Oxides

Abstract

A fast and simple method for the synthesis of solid solutions based on erbium-doped yttrium oxide  (Y1–xErx)2O3 has been proposed. The crystal structure of samples was determined by X-ray diffraction method. Compounds exhibit greenish-yellow upconversion emission upon IR laser excitation (980 nm). An increase in the erbium concentration in (Y1–xErx)2O3 causes a change in the color of the upconversion luminescence and a growth of its intensity. The maximum intensity of the upconversion luminescence is observed for oxide with x = 0.05. Based on the pumping power dependence of intensity of emission lines associated with 2H11/2/4S3/24I15/2 и 4F9/24I15/2 transitions, the two-photon excitation mechanism was determined. The absolute and relative sensitivities were calculated from the temperature dependences of the ratio of emission lines corresponding to transitions from thermally coupled excited 2H11/2 and 4S3/2 levels, these values showed the promise for use of oxides as materials for non-contact temperature sensing.

About the Authors

I. V. Baklanova
Institute of Solid State Chemistry, Ural Branch Russian Academy of Sciences
Russian Federation

Ekaterinburg



V. N. Krasil’nikov
Institute of Solid State Chemistry, Ural Branch Russian Academy of Sciences
Russian Federation

Ekaterinburg



A. P.  Tyutyunnik
Institute of Solid State Chemistry, Ural Branch Russian Academy of Sciences
Russian Federation

Ekaterinburg



Ya. V. Baklanova
Institute of Solid State Chemistry, Ural Branch Russian Academy of Sciences
Russian Federation

Ekaterinburg



References

1. M. D. Dramićanin. J. Appl. Phys., 128 (2020) 040902

2. R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, M. Alden. Appl. Phys. B Laser Opt., 88 (2007) 291

3. A. Omrane, P. Petersson, M. Alden, M. A. Linne. Appl. Phys. B, 92 (2008) 99—102

4. H. Berthou, C. K. Jörgensen. Opt. Lett., 15 (1990) 1100—1102

5. J. Cao, D. Xu, F. Hu, X. Li, W. Chen, L. Chen, H. Guo. J. Eur. Ceram. Soc., 38 (2018) 2753—2758

6. T. M. Kozhan, V. V. Kuznetsova, I. I. Sergeev, V. S. Khomenko. J. Appl. Spectrosc., 40 (1984) 267—270

7. A. Ćirić, T. Gavrilović, M. D. Dramićanin. Crystals, 11 (2021) 189

8. L. Liu, Y. Wang, X. Zhang, K. Yang, J. Li, G. Liu, Y. Song. J. Lumin., 132 (2012) 1483—1488

9. G. Chen, H. Qiu, P. N. Prasad, X. Chen. Chem. Rev., 114 (2014) 5161—5214

10. B. H. Toby. J. Appl. Crystallogr., 34 (2001) 210—213

11. A. C. Larson, R. B. Von Dreele. General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR (2004) 86—748

12. П. А. Лойко, Г. Е. Рачковская, Н. А. Скопцов, Г. М. Арзуманян, М. Кулик, А. И. Куклин, Г. Б. Захаревич, К. В. Юмашев, Х. Маtеоs. Журн. прикл. спектр., 84 (2017) 172—180 [P. A. Loiko, G. E. Rachkovskaya, N. A. Skoptsov, G. M. Arzumanyan, M. Kulik, A. I. Kuklin, G. B. Zakharevich, K. V. Yumashev, X. Mateos. J. Appl. Spectr., 84 (2017) 194—201]

13. Н. В. Гапоненко, Л. В. Судник, П. А. Витязь, А. Р. Лученок, М. В. Степихова, А. Н. Яблонский, Е. И. Лашковская, К. В. Шустикова, Ю. В. Радюш, В. Д. Живулько, А. В. Мудрый, Н. М. Казючиц, М. С. Русецкий. Журн. прикл. спектр., 89 (2022) 184—190 [N. V. Gaponenko, L. V. Sudnik, P. A. Vityaz, A. R. Luchаnok, M. V. Stepikhova, A. N. Yablonskiy, E. I. Lashkovskaya, K. V. Shustsikava, Yu. V. Radyush, V. D. Zhivulko, А. V. Mudryi, N. M. Kazuchits, M. S. Rusetsky. J. Appl. Spectr., 89 (2022) 238—243]

14. K. L. Kelly. J. Opt. Soc. Am., 33 (1943) 627—632

15. В. А. Пустоваров, Е. С. Трофимова, Ю. А. Кузнецова, А. Ф. Зацепин. Письма в ЖТФ, 44 (2018) 42—49

16. J. Zhang, S. Wang, L. An, M. Liu, L. Chen. J. Lumin., 122-123 (2007) 8—10


Review

For citations:


Baklanova I.V., Krasil’nikov V.N., Tyutyunnik A.P., Baklanova Ya.V. Luminescent Ther￾mometry (Y1–xEr x) 2O3 Oxides. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):184-188. (In Russ.)

Views: 91


ISSN 0514-7506 (Print)