Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Fluorozirconate Phosphate Glasses and Glass Ceramics: Visible and NIR Luminescence

Abstract

A comparative study of the luminescent properties of erbium(III)-doped fluorozirconate glass and fluorozirconate phosphate glass and glass ceramics containing NaPO3 was carried out. The glasses were obtained by melt-quenching technique and characterized by methods of luminescent spectroscopy, differential thermal analysis, X-ray diffraction and transmission electron microscopy. When NaPO3 is added, the relative luminescence intensity of Er(III) in the near infrared (IR) region doubles at 1530 nm (transition 4I13/24I15/2), the luminescence intensity of other bands in the visible and near IR regions decreases. The quantum yields and luminescence lifetimes of the studied samples were measured. The reasons for the change in luminescence intensity during the addition of NaPO3 and after heat treatment of samples are discussed.

About the Authors

I. G. Maslennikova
Institute of Chemistry, FEB Russian Academy of Sciences
Russian Federation

Vladivostok



V. K. Goncharuk
Institute of Chemistry, FEB Russian Academy of Sciences; Pacific S. O. Makarov Higher Naval School
Russian Federation

Vladivostok



A. G.  Mirochnik
Institute of Chemistry, FEB Russian Academy of Sciences
Russian Federation

Vladivostok



A. A. Sergeev
Institute of Automation and Control Processes, FEB Russian Academy of Sciences
Russian Federation

Vladivostok



References

1. A. J. Stevenson, H. l. Serier-Brault, P. Gredin, M. Mortier. J. Fluorine Chem., 132 (2011) 1165—1173, http://doi.org/10.1016/j.jfluchem.2011.07.017

2. M. Olivier, P. Pirasteh, J.-L. Doualan, P. Camy, H. Lhermite, J.-L. Adam, V. Nazabal. Opt. Mater., 33 (2011) 980—984, http://doi.org/10.1016/j.optmat.2010.12.007

3. S. Schweizer, J. A. Johnson. Radiat. Measurements, 42 (2007) 632—637, http://doi.org/10.1016/j.radmeas.2007.01.056

4. F. Huang, X. Liu, L. Hu, D. Chen. Sci. Rep., 4 (2014) 5053, http://doi.org/10.1038/srep05053

5. W. A. Pisarski, J. Pisarska, D. Dorosz, J. Dorosz. Mater. Chem. Phys., 148 (2014) 485—489, http://doi.org/10.1016/j.matchemphys.2014.08.020

6. M. Dejneka, B. Samson. Mater. Res. Soc. Bull., 24 (1999) 39—45, https://doi.org/10.1557/S0883769400053057

7. T. Xue, C. Huang, L. Wang, Y. Li, Y. Liu, D. Wu, M. Liao, L. Hu. Opt. Mater., 77 (2018) 117—121, https://doi.org/10.1016/j.optmat.2018.01.025

8. Yanchao Li, B. Dou, Z. Xiao, B. Li, F. Huang, Yinyan Li, S. Xu. Opt. Mater., 105 (2020) 109900, https://doi.org/10.1016/j.optmat.2020.109900

9. C. R. Kesavulu, H. J. Kim, S. W. Lee, J. Kaewkhao, N. Wantana, S. Kothan, S. Kaewjaeng. J. Non- Cryst. Solids, 474 (2017) 50—57, http://dx.doi.org/10.1016/j.jnoncrysol.2017.08.018

10. P. Manasa, C. K. Jayasankar. Opt. Mater., 62 (2016) 139—145, http://dx.doi.org/10.1016/j.optmat.2016.09.006

11. H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, E. Y. B. Pun. J. Lumin., 124 (2007) 167—172, https://doi.org/10.1016/j.jlumin.2006.02.019

12. E. A. dos Santos, L. C. Courrol, L. R. P. Kassab, L. Gomes, N. U. Wetter, N. D. Vieira, S. J. L. Ribeiro, Y. Messaddeq. J. Lumin., 124 (2007) 200—206, http://dx.doi.org/10.1016/j.jlumin.2006.03.003

13. W. Miniscalco. J. Lightwave Techn., 9 (1991) 234—250, http://dx.doi.org/10.1109/50.65882

14. Y.-P. Peng, C. Wang, X. Yuan, L. Zhang. J. Lumin., 172 (2016) 331—334, http://dx.doi.org/10.1016/j.jlumin.2015.12.017

15. S. Damodaraiah, V. R. Prasad, Y. C. Ratnakaram. J. Alloys Compd., 741 (2018) 269—280, https://doi.org/10.1016/j.jallcom.2018.01.158

16. M. S. Gaafar, S. Y. Marzouk. J. Alloys Compd., 723 (2017) 1070—1078, http://dx.doi.org/10.1016/j.jallcom.2017.06.261

17. S. Jiang, M. Myers, N. Peyghambarian. J. Non-Cryst. Solids, 239 (1998) 143—148, http://doi.org/10.1016/S0022-3093(98)00757-1

18. X. L. Yang, W. C. Wang, Y. Liu, Q. Y. Zhang. J. Non-Cryst. Solids, 475 (2017) 144—150, http://dx.doi.org/10.1016/j.jnoncrysol.2017.09.007

19. Sk. N. Rasool, B. C. Jamalaiah, K. Suresh, L. R. Moorthy, C. K. Jayasankar. J. Mol. Struct., 1130 (2017) 837—843, http://dx.doi.org/10.1016/j.molstruc.2016.10.090

20. C. R. Kesavulu, V. B. Sreedhar, C. K. Jayasankar, K. Jang, D.-S. Shin, S. S. Yi. Mat. Res. Bull., 51 (2014) 336—344, http://dx.doi.org/10.1016/j.materresbull.2013.12.023

21. T. S. Gonçalves, J. F. M. dos Santos, L. F. Sciuti, T. Catunda, A. S. S. de Camargo. J. Alloys Compd., 732 (2018) 887—893, https://doi.org/10.1016/j.jallcom.2017.10.152

22. D. D. Ramteke, R. E. Kroon, H. C. Swart. J. Non-Cryst. Solids, 457 (2017) 157—163, http://dx.doi.org/10.1016/j.jnoncrysol.2016.12.006

23. A. Kumar, D. K. Rai, S. B. Rai. Spectrochim. Acta A, 58 (2002) 3067—3075, https://doi.org/10.1016/S1386-1425(02)00030-6

24. M. Jayasimhadri, L. R. Moorthy, K. Kojima, K. Yamamoto, Noriko Wada, Noriyuki Wada. J. Phys.: Condens. Matter., 17 (2005) 7705—7715, http://doi.org/10.1088/0953-8984/17/48/020

25. D. Pugliese, N. G. Boetti, J. Lousteau, E. Ceci-Ginistrelli, E. Bertone, F. Geobaldo, D. Milanese. J. Alloys Compd., 657 (2016) 678—683, http://dx.doi.org/10.1016/j.jallcom.2015.10.126

26. X. Zou, T. Izumitani. J. Non-Cryst. Solids, 162 (1993) 68—80, https://doi.org/10.1016/0022–3093(93)90742-G

27. Г. Е. Малашкевич, В. В. Ковгар, Н. В. Варапай, Т. А. Павич, Г. П. Шевченко, Ю. В. Бокшиц, К. Н. Нищев, З. М. Казакбаева. Журн. прикл. спектр., 90, № 5 (2023) 684—688 [G. E. Malashkevich, V. V. Kouhar, N. V. Varapay, T. A. Pavich, G. P. Shevchenko, Yu. V. Bokshits, K. N. Nishchev, Z. M. Kazakbaeva. J. Appl. Spectr., 90, N 5 (2023) 977—981]

28. Y. Guo, X. Liu, H. Duan, G. Yan, K. Zhang, K. Wang, Y. Wang, G. Zhao, X. Zhang, F. Huang, J. Zhang. J. Alloys Compd., 753 (2018) 502—507, https://doi.org/10.1016/j.jallcom.2018.04.015

29. V. K. Goncharuk, V. Ya. Kavun, A. B. Slobodyuk, V. E. Silant’ev, A. Yu. Mamaev, A. G. Mirochnik, I. G. Maslennikova. J. Non-Cryst. Solids, 480 (2018) 61—69, http://dx.doi.org/10.1016/j.jnoncrysol.2017.10.018

30. L. N. Ignatieva, Yu. V. Marchenko, V. A. Mashchenko, I. G. Maslennikova, A. G. Mirochnik, V. K. Goncharuk. J. Non-Cryst. Solids, 572 (2021) 121105, https://doi.org/10.1016/j.jnoncrysol.2021.121105

31. A. Herrmann, D. Ehrt. Int. J. Appl. Glass Sci., 1 (2010) 341—349, https://doi.org/10.1111/j.20411294.2010.00031.x

32. D. Mȍncke, D. Ehrt, L. L. Velli, C. P. E. Versamis, E. I. Kamitsos. Phys. Chem. Glasses, 46 (2005) 67—71, https://doi.org/10.1021/jp510175j

33. Г. Е. Малашкевич, Н. Н. Ермоленко, В. И. Александров, М. А. Борик, Г. М. Волохов, А. С. Гигевич, Г. А. Денисенко, А. В. Мазовко, В. Н. Тадэуш. Изв. АН СССР. Неорг. матер., 23, № 6 (1987) 1053—1054

34. C. Yu, J. Zhang, Z. Jiang. J. Non-Cryst. Solids, 353 (2007) 2654—2658, https://doi.org/10.1016/j.jnoncrysol.2007.05.005

35. Е. И. Войт, А. В. Войт, В. И. Сергиенко. Физика и химия стекла, 27, № 3 (2001) 298—311, http://doi.org/10.1023/A:1011380031149

36. С. А. Дембовский, Е. А. Чечеткина. Стеклообразование, Москва, Наука (1990) 197—202


Review

For citations:


Maslennikova I.G., Goncharuk V.K., Mirochnik A.G., Sergeev A.A. Fluorozirconate Phosphate Glasses and Glass Ceramics: Visible and NIR Luminescence. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):189-194. (In Russ.)

Views: 88


ISSN 0514-7506 (Print)