Luminescent Response to the Transformation of Zinc Selenide During the Synthesis of Ceramics
Abstract
At room temperature, the pulsed cathodoluminescence spectra of zinc selenide were recorded, namely initial material and materials of its processing required for the synthesis of optical ceramics. Study objects were ZnSe samples of cubic phase and stoichiometric composition, as well as with the presence of additional phases – hexagonal ZnSe and ZnO. Three characteristic luminescence bands were detected in single-phase cubic zinc selenide. In cubic ZnSe of stoichiometric composition, one strong interband luminescence line with a width of 12–14 nm is observed in the region of 470 nm. An additional wide band at 647 nm appears with an excess of selenium. With an increased content of impurities and a small excess of zinc, a single band at 588 nm is observed. In two-phase materials containing cubic and hexagonal ZnSe as the main or additional phase, luminescence is not observed at room temperature. In cubic ZnSe with an additional hexagonal ZnO phase, except the interband luminescence line with a wavelength decreasing from 470 to 466 nm with increasing ZnO content, a strong broad doublet band of hexagonal ZnO appears at 525–900 nm. Based on the presence or absence of these pulsed cathodoluminescence bands, it is possible to carry out a rapid analysis of the quality of the ZnSe material.
About the Authors
V. I. SolomonovRussian Federation
Ekaterinburg
V. V. Osipov
Russian Federation
Ekaterinburg
A. S. Makarova
Russian Federation
Ekaterinburg
A. V. Spirina
Russian Federation
Ekaterinburg
V. V. Platonov
Russian Federation
Ekaterinburg
V. A. Shitov
Russian Federation
Ekaterinburg
References
1. Н. А. Кульчицкий, А. В. Наумов, В. В. Старцев. Успехи прикл. физики, 7, № 4 (2019) 374—389
2. Е. М. Гаврищук. Неорг. матер., 39, № 9 (2003) 1030—1050. [E. M. Gavrushchuk. Inorg. Mater., 39, N 9 (2003) 883—898]
3. В. В. Осипов, В. В. Платонов, В. В. Лисенков, К. И. Демидова, С. В. Заяц, М. П. Зыкова. ЖТФ, 93, № 10 (2023) 1481—1493, doi: 10.21883/JTF.2023.10.56287.124-23
4. В. И. Гавриленко, А. М. Грехов, Д. В. Корбутяк, В. Г. Литовченко. Оптические свойства полупроводников, Справочник, Киев, Наукова думка (1987) 429—439
5. Н. К. Морозова, В. А. Кузнецов, В. Д. Рыжиков, В. Г. Галстян, Д. В. Кастомаров. Селенид цинка. Получение и оптические свойства, Москва, Наука (1992) 33—51
6. Чан Кхань, Е. Н. Можевитина, А. В. Хомяков, С. П. Кобелева, И. Х. Аветисов. Успехи в химии и хим. технологии, 27, № 7 (2013) 64—69
7. V. I. Solomonov, S. G. Michailov, A. I. Lipchak, V. V. Osipov, V. G. Shpak, S. A. Shunailov, M. I. Yalandin, M. R. Ulmaskulov. Laser Phys., 16, № 1 (2006) 126—129
8. С. Ларах, А. Харди. Тр. Ин-та инженеров по электротехнике и радиоэлектронике, 61, № 7 (1973) 144—158
9. О. В. Богданкевич. Квант. электрон., 21, № 12 (1994) 1113—1136, https://www.mathnet.ru/rus/qe/v21/i12/p1113
10. В. В. Осипов, В. В. Платонов, В. В. Лисенков, Е. В. Тихонов. Физика и химия обработки материалов, № 5 (2021) 5—21
11. H. Okada, T. Kawanaka, S. Ohmoto. J. Crystal Growth, 165, N 1-2 (1996) 31—36
12. И. В. Корнеева, А. В. Новоселова. Журн. неорг. химии, 5, № 10 (1960) 2265—2268
13. В. И. Олешко, С. С. Вильчинская, Н. К. Морозова. ФТП, 55, № 5 (2021) 403—409
14. O. V. Bogdankevich, M. M. Zverev, A. I. Krasilnikov, A. N. Pechenov. Phys. Status Solidi, 19, N 1 (1967) K5—K6
15. А. И. Липчак, С. Г. Михайлов, В. И. Соломонов, И. В. Киселев, В. И. Соколов. Опт. и спектр., 83, № 6 (1997) 927—932 [A. I. Lipchak, S. G. Mikhailov, V. I. Solomonov, I. V. Kiselev, V. I. Sokolov. Opt. and Spectrosc., 83, N 6 (1997) 854—859]
16. В. В. Блинов, Е. М. Гаврищук, В. Г. Галстян, В. С. Зимогорский, И. А. Каретников, Н. К. Морозова, В. Г. Плотниченко. Неорг. матер., 37, № 12 (2001) 1439—1446
Review
For citations:
Solomonov V.I., Osipov V.V., Makarova A.S., Spirina A.V., Platonov V.V., Shitov V.A. Luminescent Response to the Transformation of Zinc Selenide During the Synthesis of Ceramics. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):195-203. (In Russ.)