Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Possibility of Pumping Alexandrite and Ti:Sapphire Lasers with LED Emissions in the Range of 440–510 nm

Abstract

This work examines the energy and spectral characteristics of the most powerful modern AlInGaN LEDs with peak emission wavelengths of 440, 470, and 510 nm in relation to pumping two laser media: Ti:Sapphire (Ti:Al2O3) and alexandrite (Cr:Al2BeO4). The absorption coefficients of LED radiation in laser media have been experimentally studied depending on the peak wavelength, operating mode, and excitation level. The corresponding values of spectral matching (efficiency of absorption of pump radiation) are calculated for various combinations of LEDs and active laser media. The energy characteristics (radiation power, energy per pulse) of LED emitters in a wide range of excitation levels have been studied. The maximum energy capabilities have been assessed, both in terms of output optical power and efficiency. The optimal combinations of LED and active laser medium to achieve lasing have been determined.

About the Authors

A. V. Aladov
Submicron Heterostructures for Microelectronics, Research and Engineering Center of RAS
Russian Federation

St. Petersburg



A. L. Zakgeim
Submicron Heterostructures for Microelectronics, Research and Engineering Center of RAS
Russian Federation

St. Petersburg



A. E. Ivanov
St. Petersburg Electrotechnical University “LETI”
Russian Federation

St. Petersburg



A. E. Chernyakov
Submicron Heterostructures for Microelectronics, Research and Engineering Center of RAS
Russian Federation

St. Petersburg



References

1. J. Walling, O. Peterson, H. Jenssen, R. Morris, E. O’Dell. IEEE J. Quantum Electron., 16, N 12 (1980) 1302—1315

2. P. F. Moulton. J. Opt. Soc. Am. B, 3, N 1 (1986) 125—133

3. S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, F. Kannari. Appl. Phys. Express, 7, N 2 (2014) 022702

4. K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, T. Südmeyer. Opt. Express, 23, N 23 (2015) 30043—30048

5. S. Yu. Karpov. Proc. SPIE, 9768 (2016) 1—17

6. S. Yu. Karpov. Opt. Quantum Electron., 47, N 6 (2015) 1293—1303

7. A. L. Zakgeim, A. V. Aladov, A. E. Ivanov, N. A. Talnishnikh, A. E. Chernyakov. Techn. Phys. Lett., 48, N 4 (2022) 192—195

8. https://lumileds.com/wp-content/uploads/DS309-luxeon-rubix-datasheet.pdf

9. A. Laubsch, M. Sabathil, J. Baur, M. Peter, B. Hahn. IEEE Trans. Electron. Devices, 57, N 1 (2010) 79—87

10. T. Taki, M. Strassburg. ECS J. Solid State Sci. and Technol., 9, N 1 (2020) 15—17

11. А. В. Аладов, А. Л. Закгейм, А. Е. Иванов, А. Е. Черняков. Журн. прикл. спектр., 89, № 3 (2022) 336—340 [A. V. Aladov, A. L. Zakgeim, A. E. Ivanov, A. E. Chernyakov. J. Appl. Spectr., 89, (2022) 439—442]

12. J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morrisg. IEEE J. Quantum Electron., QE-21 (1985) 1568—1581

13. G. M. Thomas, A. Minassian, X. Sheng, M. J. Damzen. Opt. Express, 24, N 24 (2016) 27212—27224 [14] S. T. Lai, M. L. Shand. J. Appl. Phys., 54, N 10 (1983) 5642—5644

14. R. Scheps, J. F. Myers, T. R. Glesne, H. B. Serreze. Opt. Commun., 97, N 5-6 (1993) 363—366

15. S. Ghambari, R. Akbari, A. Major. Opt. Express, 24, N 13 (2016) 14836—14840

16. W. R. Kerridge-Johns, M. J. Damzen. Opt. Express, 26, N 6 (2018) 7771—7785

17. P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, P. Georges. Opt. Lett., 42, N 20 (2017) 4191—4194

18. P. F. Moulton. Opt. News, 8, N 6 (1982) 9

19. L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, K. Ferencz. Appl. Phys. B, 65, N 2 (1997) 151—159

20. R. Ell, U. Morgner, F. X. Kãârtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow,

21. T. Tschudi, M. J. Lederer, A. Boiko, B. Luther-Davies. Opt. Lett., 26, N 6 (2001) 373—375

22. P. W. Roth, A. J. Maclean, D. Burns, A. J. Kemp. Opt. Express, 20, N 18 (2012) 20629—20634 [23] D. A. Kopylov, M. N. Esaulkov, I. I. Kuritsyn, A. O. Mavritskiy, B. E. Perminov, A. V. Konyashchenko, T. V. Murzina, A. I. Maydykovskiy. Laser Phys. Lett., 15, N 4 (2018) 45—51

23. J. Piprek. Phys. Status Solidi (a), 207, N 10 (2010) 2217—2225

24. L. Kangin, B. Sangyoon, J.-S. Kwag, J.-H. Kwon, J. Yi. J. Korean Phys. Soc., 59, N 5 (2011) 3239—3245

25. P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, P. Georges. Opt. Lett., 5, N 10 (2018) 1236—1239

26. А. Л. Закгейм, А. Е. Черняков. Светотехника, 4 (2013) 51—56

27. A. Bulashevich, S. Y. Karpov. Phys. Status Solidi (c), 5, N 6 (2008) 2066—2069

28. U. Demirbas, F. X. Kärtner. J. Opt. Soc. Am. B, 37, N 2 (2020) 450—472

29. Zhang-Wang Miao, Hai-juan Yu, Jing-Yuan Zhang, S. Zou, P. Zhao, Bojie Lou, Xuechun Lin. IEEE Photon. Technol. Lett., 32, N 5 (2020) 247—250

30. А. В. Аладов, А. Л. Закгейм, А. Е. Иванов, А. Е. Черняков. Светотехника, 5 (2023) 3—8


Review

For citations:


Aladov A.V., Zakgeim A.L., Ivanov A.E., Chernyakov A.E. Possibility of Pumping Alexandrite and Ti:Sapphire Lasers with LED Emissions in the Range of 440–510 nm. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):204-210. (In Russ.)

Views: 76


ISSN 0514-7506 (Print)