Redox State of Photosynthetic Ferredoxin Under Heat and Light Stress
Abstract
Using the method of differential absorption photometry, the kinetics of oxidation/reduction of P700, plastocyanin (PC) and ferredoxin (Fd) in the first leaves of barley seedlings under exposure to high-intensity light (2.000 μmol quanta m–2 s–1, 30 min) and elevated temperature (40 °C, 3 h) were studied. Exposure to high-intensity light increased the accumulation of the primary oxidizer P700+, oxidized PC and reduced Fd. Under the same conditions, the absence of reoxidation of reduced Fd under red and far-red light was noted. In barley seedlings exposed to elevated temperatures, there was an increased accumulation of P700+, oxidized PC and reduced Fd, as well as accelerated reoxidation of leaf Fd under red light and no accumulation of oxidized Fd under far-red light. It was concluded that the photoindependent electron flow through Fd under light stress and alternative electron flows with the participation of the plastoquinone pool under heat stress were activated.
References
1. S. Mathur, D. Agrawal, A. Jajoo. J. Photochem. Photobiol. B: Biology, 137 (2014) 116—126
2. W. Yamori, K. Hikosaka, D. A. Way. Photosynth. Res., 119 (2014) 101—117
3. C. M. Anderson, E. M. Mattoon, N. Zhang. Commun. Biol., 4 (2021) art. 1092
4. E. Maai, K. Nishimura, R. Takisawa, T. Nakazaki. Plant Prod. Sci., 23 (2020) 172—181
5. S. Takahashi, H. Bauwe, M. Badger. Plant Physiol., 144 (2007) 487—494
6. K.-J. Dietz. J. Exp. Bot., 66 (2015) 2401—2414
7. S. Takahashi, M. R. Badger. Trends Plant Sci., 16 (2011) 53—60
8. H. Kirchhoff. Philos. Trans. R. Soc. Lond. B Biol. Sci., 369 (2014) art. 20130225
9. S. E. Flannery, C. Hepworth, W. H. J. Wood, F. Pastorelli, C. N. Hunter, M. J. Dickman, P. J. Jackson, M. P. Johnson. Plant J., 105 (2020) 223—244
10. E. Maai, K. Nishimura, R. Takisawa, T. Nakazaki. Plant Prod. Sci., 23 (2020) 172—181
11. P. Müller, X.-P. Li, K. K. Niyogi. Plant Physiol., 125 (2001) 1558—1566
12. J.-D. Rochaix. Annu. Rev. Plant Biol., 65 (2014) 287—309
13. Y. Sun, C. Frankenberg, J. D. Wood, D. S. Schimel, M. Jung, L. Guanter, D. T. Drewry, M. Verma, A. Porcar-Castell, T. J. Griffis, L. Gu, T. S. Magney, P. Köhler, B. Evans, K. Yuen. Science, 358, N 6360 (2017) art. 5747
14. S. J. Crafts-Brandner, M. E. Salvucci. Plant Physiol., 129 (2002) 1773—1780
15. S. Z. Tóth, J. T. Puthur, V. Nagy, G. Garab. Plant Physiol., 149, N 3 (2009) 1568—1578
16. N. Pshybytko, J. Kruk, L. Kabashnikova, K. Strzalka. Biochim. Biophys. Acta, 1777 (2008) 1393—1399
17. E. Medina, S.-H. Kim, M. Yun, W.-G. Choi. Plants, 10 (2021) art. 371
18. Q. Li, Z. J. Yao, H. Mi. Front. Plant Sci., 7 (2016) art. 285
19. Y. Jiang, X. Feng, H. Wang, Y. Chen, Y. Sun. J. Plant Res., 134 (2021) 1311—1321
20. Н. Л. Пшибытко. Журн. прикл. спектр., 90 (2023) 67—73 [N. L. Pshybytko. J. Appl. Spectr., 90, N 1 (2023) 60—65]
21. N. Pshybytko, J. Kruk, E. Lysenko, K. Strzalka, V. Demidchik. Env. Exp. Bot., 206 (2023) art. 105151
22. T. Goss, G. Hanke. Curr. Protein Pept. Sci., 15, N 4 (2014) 385—393
23. F. J. Cejudo, M.-C. González, J. M. Pérez-Ruiz. Plant Physiol., 86, N 1 (2021) 9—21
24. G. Kurisu, T. Tsukihara. J. Biochem., 171, N 1 (2022) 19—21
25. I. Bertini, C. Luchinat, A. Provenzani, A. Rosato, P. R. Vasos. Proteins, 4, N 6 (2002) 110—127
26. Y. Onda, T. Matsumura, Y. Kimata-Ariga, H. Sakakibara, T. Sugiyama, T. Hase. Plant Physiol., 123 (2000) 1037—1046
27. G. T. Hanke, Y. Kimata-Ariga, I. Taniguchi, T. Hase. Plant Physiol., 134, N 1 (2004) 255—264
28. X. Guan, S. Chen, C. P. Voon, K.-B. Wong, M. Tikkanen, B. L. Lim. Front. Plant Sci., 9 (2018) art. 410
29. G. Hanke, P. Mulo. Plant Cell Environ., 36 (2013) 1071—1084
30. K. Yoshida, Y. Yokochi, K. Tanaka, T. Hisabori. J. Biol. Chem., 298, N 12 (2022) art. 102650
31. M. Lindahl, T. Kieselbach. J. Proteomics., 72, N 3 (2009) 416—438
32. P. Geigenberger, I. Thormählen, D. M. Daloso, A. R. Fernie. Trends Plant Sci., 22, N 3 (2017) 249—262
33. L. Nikkanen, E. Rintamaki. Biochem. J., 476 (2019) 1159—1172
34. M. Zaffagnini, S. Fermani, C. H. Marchand, A. Costa, F. Sparla, N. Rouhier, P. Geigenberger, S. D. Lemaire, P. Trost. Antioxid. Redox Signal., 31, N 3 (2019) 155—210
35. U. Schreiber, C. Klughammer. Plant Cell Physiol., 57, N 7 (2016) 1454—1467
36. C. Klughammer, U. Schreiber. Photosynth. Res., 128, N 2 (2016) 195—214
37. П. Ф. Рокицкий. Биологическая статистика, Минск, Вышэйшая школа (1973)
38. C. Gisriel, G. Shen, V. Kurashov, M. Y. Ho, S. Zhang, D. Williams, J. H. Golbeck, P. Fromme, D. A. Bryant. Sci. Adv., 6, N 6 (2020) art. 6415
39. J. Minagawa. Biochim. Biophys. Acta – Bioenergetics, 1807, N 8 (2011) 897—905
40. K. Yoshida, T. Hisabori. Antioxidants, 7 (2018) art. 153
41. T. Ogawa, K. Kobayashi, Y. Y. Taniguchi, T. Shikanai, N. Nakamura, A. Yokota, Y. N. Munekage. Plant Physiology, 191, N 4 (2023) 2288—2300
42. M. Ma, Y. Liu, C. Bai, Y. Yang, Z. Sun, X. Liu, S. Zhang, X. Han, J. W. H. Yong. Front. Plant Sci., 12 (2021) art. 702196
43. T. G. Laughlin, A. N. Bayne, J. F. Trempe. Nature, 566 (2019) 411—414
Review
For citations:
Pshybytko N.L. Redox State of Photosynthetic Ferredoxin Under Heat and Light Stress. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):264-272. (In Russ.)