Luminescence Study and Energy Transfer from Ce3+ to Yb3+ in Sr5 (BO3)3Cl Phosphor
Abstract
A new phosphor Sr5(BO3)3Cl:Ce3+,Yb3+, which enables near-infrared (NIR) quantum cutting, was prepared using traditional solid-state reaction methods. Its properties were examined using X-ray diffraction, photoluminescence emission, excitation spectra, and measurements of fluorescence decay. Upon excitation of Ce3+ with an ultraviolent (UV) photon at 350 nm, broadband emission at 415 nm and an intense NIR emission at 982 nm were observed. Emission at 415 nm corresponds to 5d→4f transition of Ce3+ ions, whereas the NIR emission at 982 nm is ascribed to the characteristic 2F5/2→2F7/2 transition of Yb3+ ions. Thorough investigation delved into how the concentration of Ce3+ affects visible and NIR emissions, decay lifetime, and energy transfer efficiency (ηETE). Detailed analysis of photoluminescence excitation, emission spectra, and fluorescence decay measurements revealed a proficient energy transfer from Ce3+ to Yb3+ ions. This transfer was demonstrated as a cooperative energy transfer (CET) process, showcasing a CET efficiency of 71.2% and a total theoretical quantum efficiency of 171.2%.
About the Author
R. A. TalewarIndia
Nagpur
References
1. Te-Ju Lee, Li-Yang Luo, Eric Wei-Guang Diau, Teng-Ming Chen, Bing-Ming Cheng, Chien-Yueh Tung, Appl. Phys. Lett., 89, 131121 (2006).
2. T. Trupke, M. A. Green, P. Würfel, J. Appl. Phys., 92, 1668–1674 (2002).
3. Bryan M. van der Ende, Linda Aarts, Andries Meijerink, Phys. Chem. Chem. Phys., 11, 11081–11095 (2009).
4. O. M. ten Kate, M. de Jong, H. T. Hintzen, E. van der Kolk, J. Appl. Phys., 114, 084502 (2013).
5. D. L. Dexter, Phys. Rev., 108, 630–633 (1957).
6. J. L. Sommerdijk, A. Bril, A. W. de Jager, J. Lumin., 8, 341–343 (1974).
7. J. L. Sommerdijk, A. Bril, A.W. de Jager, J. Lumin., 9, 288–296 (1974).
8. W. W. Piper, J. A. DeLuca, F. S. Ham, J. Lumin., 8, 344–348 (1974).
9. R. T. Wegh, H. Donker, K. D. Oskam, A. Meijerink, Science, 283, 663–666 (1999).
10. Nobuhiro Kodama, Shinya Oishi, J. Appl. Phys., 98, 103515 (2005).
11. Nobuhiro Kodama, Yamato Watanabe, Appl. Phys. Lett., 84, 4141–4143 (2004).
12. R. T. Wegh, E. V. D. van Loef, A. Meijerink, J. Lumin., 90, 111–122 (2000).
13. Zhaogang Nie, Jiahua Zhang, Xia Zhang, Xinguang Ren, Guobin Zhang, Xiao-jun Wang, Opt. Lett., 32, 991–993 (2007).
14. G. Lakshminarayana, Hucheng Yang, Song Ye, Yin Liu, Jianrong Qiu, J. Mater. Res., 23, 3090–3095 (2008).
15. L. Li, Wei Xiantao, Chen Yonghu, Guo Changxin, Yin Min, J. Rare Earths, 30, 197–201 (2012).
16. Yumiko Katayama, SetsuhisaTanabe, J. Lumin., 134, 825–829 (2013).
17. T. M. Kozhan, V. V. Kuznetsova, P. P. Pershukevich, I. I. Sergeev, V. S. Khomenko, J. Appl. Spectrosc., 63, 849–854 (1996).
18. B. S. Richards, Sol. Energy Mater. Sol. Cells, 90, 1189–1207 (2006).
19. Hao Zhang, Xue Yun Liu, Feng Yang Zhao, Li Hong Zhang, Yan Fan Zhang, Hai Guo, Opt. Mater., 34, 1034–1036 (2012).
20. Ye Li, Qiuling Yu, Lin Huang, Jing Wang, Qiang Su, Opt. Mater. Express, 4, 227–233 (2014).
21. Y. Ikeda, K. Masada, H. Kurokawa, H. Motomura, M. Jinno, K. Tachibana, J. Phys. D: Appl. Phys., 46, 065305 (2013).
22. Z. G. Nie, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, G. B. Zhang, X. J. Wang, J. Solid State Chem., 180, 2933–2941 (2007).
23. Y. Z. Wang, D. C. Yu, H. H. Lin, S. Ye, M. Y. Peng, Q. Y. Zhang, J. Appl. Phys., 114, 203510 (2013).
24. Xiaobo Chen, Gregory J. Salamo, Guojian Yang, Yongliang Li, Xianlin Ding, Yan Gao, Quanlin Liu, Jinghua Guo, Opt. Express, 21, A829–A840 (2013).
25. R. T. Wegh, H. Donker, A. Meijerink, R. J. Lamminmäki, J. Hölsä, Phys. Rev. B, 56, 13841 (1997).
26. Z. Yang, J. H. Lin, M. Z. Su, Y. Tao, W. Wang, J. Alloys Compd., 308, 94–97 (2000).
27. Xianju Zhou, Guangchuan Wang, Kaining Zhou, Qingxu Li, Opt. Mater., 35, 600–603 (2013).
28. Zhaogang Nie, Ki-Soo Lim, Jiahua Zhang, Xiaojun Wang, J. Lumin., 129, 844–849 (2009).
29. Jiajia Zhou, Yu Teng, Xiaofeng Liu, Song Ye, Xiaoqiu Xu, Zhijun Ma, Jianrong Qiu, Opt. Express, 18, 21663–21668 (2010).
30. R. A. Talewar, C. P. Joshi, S. V. Moharil, Opt. Mater., 55, 44–48 (2016).
31. A. A. Pathak, R. A. Talewar, C. P. Joshi, S. V. Moharil, J. Lumin., 179, 350–354 (2016).
32. Praveen Kumar Shahi, Priyam Singh, Shyam Bahadur Rai, Amresh Bahadur, Inorg. Chem., 55, 1535–1541 (2016).
33. Lei Zhao, Lili Han, Yuhua Wang, Opt. Mater. Express, 4, 1456–1464 (2014).
34. Minghao Qu, Ruzhi Wang, Yan Chen, Ying Zhang, Kaiyu Li, Hui Yan, J. Lumin., 132, 1285–1289 (2012).
35. X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. H. Qiao, G. P. Dong, D. P. Chen, J. R. Qiu, Lett., 34, 3565–3567 (2009).
36. Y. Teng, J. Zhou, S. Ye, J. Qiu, J. Electrochem. Soc., 157, A1073–A1075 (2010).
37. X. Y. Huang, X. H. Ji, Q. Y. Zhang, J. Am. Ceram. Soc., 94, 833–837 (2011).
38. Theodore Alekel, Douglas A. Keszler, Acta Crystallogr. C, 48, 1382–1386 (1992).
39. R. D. Shannon, Acta Cryst. A, 32, 751–767 (1976).
40. Qiuhong Zhang, Jing Wang, Ruijin Yu, Mei Zhang, Qiang Su, Electrochem. Solid State Lett., 11, H335–H337 (2008).
41. P. Dorenbos, Phys. Rev. B, 65, 235110 (2002).
42. P. Dorenbos, J. Lumin., 91, 155–176 (2000)
43. Takunori Taira, William M. Tulloch, Robert L. Byer, Appl. Opt., 36, 1867–1874 (1997).
44. Jin Deng Chen, Hai Guo, Zheng Quan Li, Hao Zhang, Yi Xi Zhuang, Opt. Mater., 32, 998–1001 (2010).
45. Xinguo Zhang, Liya Zhou, Qi Pang, Jianxin Shi, Menglian Gong, J. Phys. Chem. C, 118, 7591–7598 (2014).
46. K. Annapoorani, P. Karthikeyan, Ch. Basavapoornima, K. Marimuthu, J. Non-Cryst. Solids, 476, 128–136 (2017)
47. Ting Sun, Ai-Hua Li, Chao Xu, Yu-Heng Xu, Rui Wang, Opt. & Laser Technol., 56, 322–325 (2014).
48. Bing Gao, Qiqi Yan, Yu Tong, Xianghua Zhang, Hongli Ma, Jean-luc Adam, Jing Ren, Guorong Chen, J. Lumin., 143, 181–184 (2013).
49. Woan-Jen Yang, Liyang Luo, Teng-Ming Chen, Niann-Shia Wang, Chem. Mater., 17, 3883–3888 (2005).
50. Zhang Hao, Chen Jindeng, Guo Hai, J. Rare Earths, 29, 822–825 (2011).
51. G. E. Malashkerich, M. V. Korzhik, M. G. Lifshitz, A. L. Blinov, M. A. Borik, JETP Lett., 47, 38–39 (1988).
52. G. E. Malashkerich, M. V. Korzhik, M. G. Lifshitz, V. B. Pavlenko, A. L. Blinov, M. A. Borik, J. Glass Phys. Chem., 15, 397–407 (1990).
Review
For citations:
Talewar R.A. Luminescence Study and Energy Transfer from Ce3+ to Yb3+ in Sr5 (BO3)3Cl Phosphor. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):309. (In Russ.)