Rapid Identification and Classification of Metal Waste by Laser-Induced Breakdown Spectroscopy
Abstract
The rapid identification and classification of metal garbage has been experimentally investigated. By combining laser-induced breakdown spectroscopy (LIBS) and machine learning, metal garbage can be effectively identified through spectral analysis. In this work, a novel method for metal garbage classification was developed, and a LIBS system was self-developed. As an example of metal recycling, five types of metal were adopted. Several characteristic lines of Al, W, Fe, Cu, Sn, Pb, and C were identified. For a more effective classification, principal component analysis was conducted to reduce the dimension of the spectra. Samples after the dimension reduction were classified by using K-nearest neighbors, and five types were obtained, exhibiting a final classification accuracy of 97.18%. Moreover, a mathematical model of the linear formulas between spectrum and concentration was established to achieve quantitative analysis with Fe taken as an example, laying the foundation for more refined classification.
About the Authors
Z. ZhouChina
Nanjing
W. Gao
China
Nanjing
S. Jamali
Pakistan
Jamshoro
C. Yu
China
Nanjing
Y. Liu
China
Nanjing
References
1. Z. Liu, Nature, 594, 333 (2021).
2. J. N. Nriagu, J. M. Pacyna, Nature, 333, 134–139 (1988).
3. S. S. Lam, K. O. A. Aege, C. Sonne, Nature, 584, 192 (2020).
4. Y. Tang, Nature, 538, 41 (2016).
5. B. Philip, Nature Mater., 2, 76 (2003).
6. J. Wang, D. Yu, Y. Wang, X. Du, G. Li, B. Li, Y. Zhao, Tianjin Sci. Rep., 11, 17816 (2021).
7. J. Gans, M. Wolinsky, J. Dunbar, Science, 309, No. 5739, 1387–1390 (2005).
8. M. Z. Islam, L. J. J. Catalan, E. K. Yanful, Environ. Sci. Technol., 38, No. 5, 1522(1–8) (2004).
9. T. L. Xuan, P. Jégou, P. Viel, S. Palacin, Electrochem. Commun., 10, No. 5, 699–703 (2008).
10. A. Demirbas, J. Hazard. Mater., 157, No. 2-3, 220–229 (2008).
11. H. Kim, J. Lee, E. Srivastava, J. Spectrochim. Acta B: At. Spectrosc., 184, No. 7, 106282 (2021).
12. J. Svato, T. Pospíil, J. Vedral, J. Metrology and Measurement Systems, 25, No. 2, 387–402 (2018).
13. T. L. Xuan, P. Jégou, P. Viel, Electrochem. Commun., 10, No. 5, 699–703 (2008).
14. A. Demirbas, J. Hazard. Mater., 157, No. 2-3, 220–229 (2008).
15. Y. Ma, Y. Hu, S. Qiao, Y. He, F. Tittel, Photoacoustics, 20, 100206 (2020).
16. S. Qiao, Y. Ma, Y. He, P. Patimisco, A. Sampaolo, V. Spagnolo, Opt. Express, 29, 25100–25108 (2021).
17. E. Narevicius, A. Libson, C. G. Parthey, I. Chavez, J. Narevicius, U. Even, M. G. Raizen, Phys. Rev. Lett., 100, No. 9, 093003 (2003).
18. V. Contreras, R. Valencia, J. Peralta, H. Sobral, M. A. Meneses-Nava, M. Horacio, Opt. Lett., 43, No. 10, 2260–2263 (2018).
19. G. Rasmus, L. Mats, L. Sune, Svanberg, Opt. Lett., 30, No. 21, 2882–2884 (2005).
20. P. Yaroshchyk, R. Morrison, D. Body, B. L. Chadwick, Spectrochim. Acta, B: At. Spectrosc., 60, No. 11, 1482–1485 (2005).
21. M. A. Hossen, P. K. Diwakar, S. Ragi. Sci. Rep., 11, 12693 (2021).
22. C. Che, X. Lin, X. Gao, J. Lin, H. Sun, Y. Huang, S. Tao, Microwave and Opt. Technol. Lett., 63, No. 6, 1635–1641 (2021).
23. M. E. Essington, G. V. Melnichenko, M. A. Stewart, R. A. Hull, Soil Sci. Soc. Am. J., 73, 1469–1478 (2009).
24. S. Siano, J. Agresti, The Encyclopedia of Archaeological Sci., 26 (2018).
25. C. Jessi, S. Emily, H. Jan, O. Lukas, J. Chemometrics, 26, No. 5, 143–149 (2012).
26. Y. Dai, S. Zhao, C. Song, X. Gao, Microwave and Opt. Technol. Lett., 63, No. 6, 1629–1634 (2021).
27. V. C. Costa, F. M. V. Pereira, J. Chemometrics, 34, No. 12, e3248 (2020).
28. J. Gurell, A. Bengtson, M. Falkenstrem, B. A. M. Hansson, Spectrochim. Acta B: At. Spectrosc., 74–75, 46–50 (2012).
29. S. Shin, Y. Moon, J. Lee, H. Jang, S. Jeong, Plasma Sci. Technol., 21, No. 3, 88–95 (2019).
30. J. Shlens, A Tutorial on Principal Component Analysis. arXiv preprint, arXiv:1404.1100 (2014). 318310-9
31. M. L. Zhang, Z. H. Zhou, Pattern Rec., 40, No. 7, 2038–2048 (2007).
32. L. E. Peterson, Scholarpedia, 4, No. 2, 1883 (2009).
33. L. Brunnbauer, Z. Gajarska, H. Lohninger, A. Limbeck, TrAC: Trends in Analytical Chemistry, 159, 116859 (2023).
34. Q. Zhang, Y. Liu, Y. Chen, Y. Zhangcheng, Z. Zhuo, L. Li, Opt. Express, 28, No. 15, 22844–22855 (2020).
35. Y. Qu, Q. Zhang, W. Yin, Y. Hu, Y. Liu, Opt. Express, 27, No. 12, A790–A799 (2019).
36. S. Feng, X. Qiu, G. Guo, E. Zhang, C. Li, Analyt. Chem., 93, No. 10, 4552–4558 (2021).
37. National Institute of Standards and Technology, “NIST Chemistry WebBook, SRD69,” http://webbook.nist.gov/chemistry/form-ser/ [Retrieved 28 February 2020].
38. Z. Zhou, Y. Ge, X. Zhang, M. Yang, Z. Sun, Y. Liu, J. Analyt. At. Spectrom., 38, 1569–1578 (2023).
39. Z. Zhou, Y. Ge, Y. Liu, Opt. Express, 29, 24, 39811–39823 (2021).
40. H. Peng, Y. Liu, C. Ying, X. Lu, G. Qing, Y. Chen, At. Spectrosc., 42, No. 4, 203–209 (2021).
41. X. Lu, Y. Liu, Y. Zhou, Q. Zhang, J. Cao, Y. Chen, Spectrochim. Acta B, 170, 105901 (2020).
42. L. Slavković, B. Škrbić, N. Miljević, A. Onjia, Environ. Chem. Lett., 2, 105–108 (2004).
43. N. Singh, S. Dehuri, Intell. Decision Technol., 14, No. 2, 1–14 (2020).
44. H. U. Yuan, S. University, et. al., Comp. Sci., 39, No. 10, 182–186 (2012).
45. B. B. Jia, M. L. Zhang, Pattern Rec., 106, 107423 (2020).
46. L. J. Moreira, L. A. Silva, Int. Joint Conf. Neural Networks. IEEE, 706–713 (2016).
47. H. I. Djen, H. Shengmei, Chin. J. Phys., 14, No. 1, 54–63 (1958).
Review
For citations:
Zhou Z., Gao W., Jamali S., Yu C., Liu Y. Rapid Identification and Classification of Metal Waste by Laser-Induced Breakdown Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):310. (In Russ.)