Spectrophotometric Survey of Cefixime via Facile Complexation with Vanadyl Sulfate
Abstract
Herein, an accurate and simple spectrophotometric method for investigating cefixime in different formulations is reported. The proposed method elaborates on the complexation of cefixime with vanadyl sulfate in acidic media. The yellow color complexation product manifested its maximum absorbance peak at around 321 nm, and obeyed Beer’s law in 210−6–110−4 M cefixime concentration. Obtained spectroscopic data were used to calculate standard deviation (S), limit of detection (LOD), limit of quantification (LOQ), and relative standard deviation (RSD) as 6.5×10−5, 1.96×10−4, 6.5×10−4 M, and 0.057%, respectively. In addition, the formation constant associated with the complex obtained, calculated as 5.7×1016, indicates that the final complex was remarkably stable.
About the Authors
R. JanPakistan
Mansehra KPK
N. Bashir
Pakistan
Mansehra KPK
N. Rauf
Pakistan
Islamabad
S. S. Tahir
Pakistan
Islamabad
M. Farooq
Pakistan
Islamabad
References
1. M. Ramalingam, V. Sethuraman, N. Sundaraganesan, Spectrochim. Acta A: Mol. and Biomol. Spectrosc., 78, No. 2, 660–669 (2011).
2. J. Shah, M. Rasul Jan, M. Yousaf, J. Appl. Spectrosc., 83, No. 2, 248–253 (2016).
3. A. Kumar, et al., Der Pharma Chemica, 3, No. 4, 279–291 (2011).
4. J. Bajwa, et al., Spectrochim. Acta A: Mol. and Biomol. Spectrosc., 238, 118446 (2020).
5. D. Adam, U. Hostalek, K. Tröster, Infection, 23, No. 2, S83–S86 (1995).
6. S. N. H. Azmi, et al., J. Pharm. Analysis, 3, No. 4, 248–256 (2013).
7. M. Dehghani, N. Nasirizadeh, M. E. Yazdanshenas, Mater. Sci. Eng. C, 96, 654–660 (2019).
8. W. H. Organization, The Selection and Use of Essential Medicines, Rep. WHO Expert Committee, March 2011 (including the 17th WHO model list of essential medicines and the 3rd WHO model list of essential medicines for children), World Health Organization (2012).
9. Z. Talebpour, et al., Sci. Pharm., 81, No. 2, 493–504 (2013).
10. D. Zendelovska, T. Stafilov, P. Miloševski, Bull. Chemists and Technologists of Macedonia, 22, 39–45 (2003).
11. K. S. Khandagle, et al., Int. J. Pharm. Pharm. Sci., 3, No. 1, 46–48 (2011).
12. A. Solangi, et al., Acta Chromatographica, 19, 81 (2007).
13. Z. Masoudyfar, S. Elhami, Spectrochim. Acta A: Mol. and Biomol. Spectrosc., 211, 234–238 (2019).
14. J. Shah, M. R. Jan, S. Shah, J. Fluoresc., 21, No. 2, 579–585 (2011).
15. D. Tarasov, et al., J. Appl. Spectrosc., 89, No. 5, 821–828 (2022).
16. K. Roopa, et al., J. Appl. Spectrosc., 89, No. 4, 809–818 (2022).
17. N. Bukhari, et al., Sensor Lett., 8, No. 2, 280–284 (2010).
18. G.-K. Liu, H. Zheng, J.-L. Lu, Trends Environ. Analyt. Chem., 16, 16–23 (2017).
19. A. A. Ramadan, H. Mandil, M. Dahhan, Int. J. Pharm. Pharm. Sci., 5, No. 1, 428–433 (2013).
20. S. Dhahir, N. Mohammed, The Iraq. J. Agric. Sci., 50, No. 4, 1390–1404 (2019).
21. M. Rubel, S. Akij, S. Islam, Edelweiss Pharma Analytic Acta (2019), doi: 10.33805/2689-9477.104.
22. U. I. Jahan, M. S. Islam, J. Mol. Pharm. and Regulatory Affairs, 1, No. 2, 1–6 (2019).
Review
For citations:
Jan R., Bashir N., Rauf N., Tahir S.S., Farooq M. Spectrophotometric Survey of Cefixime via Facile Complexation with Vanadyl Sulfate. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):317. (In Russ.)