Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Photoluminescence Studies of Eu3+ Activated Y2Sr3B4O12 Phosphor for Photovoltaic Application

Abstract

Y2Sr3B4O12 phosphors doped with europium ions were synthesized by a modified conventional solidstate reaction method. Characterizations of the prepared samples viz. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and Commission Internationale de I'Eclairage were studied. The XRD analysis confirmed the formation of mixed phase due to polyborate and has a hexagonal crystalline yttrium orthoborate phosphor. SEM images showed the irregular morphology of the sample. The grain size distribution was broad and the average size was found to range from 2 μm to 100 nm. PL measurements showed excitation and emission characteristics of the prepared phosphor with different concentrations of the doping ion. From the emission spectra, it was clearly observed that the emission intensity of the magnetic dipole was higher than that of electric dipole transition owing to the Eu3+ ions occupying a higher symmetry site in the Y2Sr3B4O12 host. The intensity of PL increased with increasing concentration of the dop ing ion up to 2.0 mol.%; after that, the PL intensity decreased owing to the concentration-quenching phenomenon. The results indicated that Y2Sr3B4O12:Eu3+ phosphors can be selected as a potential candidate for solar cell/photovoltaic application.  

About the Authors

V. Dewangan
Bhilai Institute of Technology Durg
India

Chhattisgarh



A. Mishra
Bhilai Institute of Technology Durg
India

Chhattisgarh



V. Dubey
North-Eastern Hill University (NEHU)
India

Shillong, Meghalaya



Y. Subbareddy
Andhra Loyola College
India

Vijayawada

   


M. C. Rao
Andhra Loyola College
India

Vijayawada



R. Koutavarapu
GMR Institute of Technology
India

Rajam, Andhra Pradesh



References

1. F. D. J. Nieuwenhout, A. Van Dijk, P. E. Lasschuit, G. Van Roekel, V. A. P. Van Dijk, D. Hirsch, H. Arriaza, M. Hankins, B. D. Sharma, H. Wade, Prog. Photovolt. Res. Appl., 9, 455–474 (2001).

2. N. Kannan, D. Vakeesan, Renew. Sustain. Energy Rev., 62, 1092–1105 (2016).

3. T. V. Ramachandra, R. Jain, G. Krishnadas, Renew. Sustain. Energy Rev., 15, 3178–3186 (2011).

4. M. J. Crane, D. M. Kroupa, D. R. Gamelin, Energy Environ. Sci., 12, 2486–2495 (2019).

5. W. Chang, L. Li, M. Dou, Y. Yan, S. Jiang, Y. Pan, M. Cui, Z. Wu, X. Zhou, Mater. Res. Bull., 112, 109–114 (2019).

6. C. S. Erickson, M. J. Crane, T. J. Milstein, D. R. Gamelin, J. Phys. Chem. C, 123, 12474–12484 (2019).

7. G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, D. Svintsov, Phys. Rev. B, 97, 1–13 (2018).

8. Z. Xiaoxia, W. Xiaojun, Ch. Baojiu, M. Qingyu, D. Weihua, R. Guozhong, Y. Yanmin, J. Alloys Compd., 433, 352–355 (2007).

9. A. V. Zaushitsyn, V. V. Mikhailin, A. Yu. Romanenko, E. G. Khaikina, O. M. Basovich, V. A. Morozov, B. I. Lazoryak, Inorg. Mater., 41, 766–772 (2005).

10. S. Neeraj, N. Kijima, A. K. Cheetham, Chem. Phys. Lett., 387, 271–276 (2004).

11. E. Tomaszewicz, M. Guzik, J. Cybińska, J. Legendziewicz, Helv. Chim. Acta, 92, 2274–2290 (2009).

12. K. S. Sohn, D. H. Park, S. H. Cho, J. S. Kwak, J. S. Kim, Chem. Mater., 18, 1768–1772 (2006).

13. K. N. Shinde, S. J. Dhoble, J. Lumin., 28, 93–96 (2013).

14. Z. Zhou, N. F. Wang, N. Zhou, Z. X. He, S. Liu, Y. N. Liu, Z. W. Tian, Z. Y. Mao, H. T. Hintzen, J. Phys. D, 46, 035104–035110 (2013).

15. F. W. Mo, L. Y. Zhou, Q. Pang, F. Z. Gong, Z. J. Liang, Ceram. Int., 38, 6289–6294 (2012).

16. Q. Xiao, Q. T. Zhou, M. Li, J. Lumin., 130, 1092–1094 (2010).

17. S. M. Zhang, B. Zhu, S. F. Zhou, J. R. Qiu, J. Soc. Inf. Display, 17, 507–510 (2009).

18. F. Shen, D. W. He, H. L. Liu, J. H. Xu, J. Lumin., 122-123, 973–975 (2007).

19. X. Zhang, H. Chen, J. Kim, J. Rare Earth, 27, 270–279 (2009).

20. N. Liu, D. Zhao, L. Yu, K. Zheng, W. Qin, Coll. Surf. A: Physio Eng. Aspects, 363, 124–129 (2010).

21. K. Sreebunpeng, W. Chewpraditkul, M. Nikl, Radiat. Measur., 60, 42–45 (2014).

22. Y. H. Wang, X. Guo, T. Endo, Y. Murakami, M. Ushirozawa, J. Solid State Chem., 177, 2242–2248 (2004).

23. V. Dubey, Jagjeet Kaur, Sadhana Agrawal, N. S. Suryanarayana, K. V. R. Murthy, Superlatt. Microstruct., 67, 156–171 (2014).

24. R. Tiwari, V. Dubey, Vijay Singh, María Elena Zayas Saucedo, Luminescence: Theory and Applications of Rare Earth Activated Phosphors, Walter de Gruyter GmbH & Co KG (2021).

25. V. Dubey, R. Tiwari, Raunak Kumar Tamrakar, Jagjeet Kaur, S. Dutta, Subrata Das, H. G. Visser, S. Som, J. Lumin., 180, 169–176 (2016).

26. N. Dubey, Marta Michalska-Domańska, Janita Saji, Vikas Dubey, Jagjeet Kaur Saluja, In: Hybrid Perovskite Composite Materials, Wood head Publishing, 169–180 (2021).

27. V. Dubey, Sudipta Som, Vijay Kumar, Luminescent Materials in Display and Biomedical Applications, CRC Press, Taylor & Francis Group (2021).

28. J. Singh, D. Poelman, V. Dubey, J. Mater. Sci.: Mater. Electron., 30, No. 23, 20665–20672 (2019).

29. G. E. Malashkevich, A. G. Makhanek, A. V. Semchenko, V. E. Gaishun, I. M. Mel’nichenko, E. N. Poddenezhnyi, Phys. Solid State, 41, 202–207 (1999).

30. G. E. Malashkevich, V. N. Sigaev, G. I. Semkova, B. Champagnon, Phys. Solid State, 46, 552–556 (2004).

31. V. Dordevic, Z. Antic, M. G. Nikolic, M. D. Dramicanin, J. Res. Phys., 37, No. 1, 47–54 (2013).

32. J. G. Sole, L. E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, John Wiley & Sons, England (2005).


Review

For citations:


Dewangan V., Mishra A., Dubey V., Subbareddy Y., Rao M.C., Koutavarapu R. Photoluminescence Studies of Eu3+ Activated Y2Sr3B4O12 Phosphor for Photovoltaic Application. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):318. (In Russ.)

Views: 122


ISSN 0514-7506 (Print)