NIR Inversion Model of Larch Wood Density at Different Moisture Contents Based on MVO-BPNN
Abstract
Owing to variation of moisture content, the larch wood basic density near-infrared (NIR) prediction model shows reduced accuracy and robustness, or even model failure. To solve this technical problem, a multi-verse-algorithm-optimized BP neural network (MVO-BPNN) prediction model is proposed to improve the accuracy of the model. The preprocessing effects of the Savitzky–Golay smoothing, detrending, and 15point moving average smoothing method were compared. The synergy interval partial least squares was used to extract the feature bands of the NIR spectra. Results showed that the prediction model based on MVO-BPNN was better than those based on BPNN and the genetic algorithm-optimized BPNN. It indicated that the NIR model based on the MVO-BPNN could effectively predict the basic density of wood with different moisture contents.
About the Authors
Z. WangChina
Harbin, Heilongjiang
Z. Zhang
China
Harbin, Heilongjiang
R. A. Williams
United States
Columbus
Y. Li
China
Harbin, Heilongjiang
References
1. Y. Yang, S. J. Shen, Sci. Technol. Rev., 28, No. 14, 113–117 (2010).
2. V. Nasir, S. Nourian, Z. Zhou, et al., Wood Sci. Technol., 53, No. 5, 1093–1109 (2019).
3. Y. Li, Y. X. Li, H. K. Xu, et al., J. Nanjing For. Univ., 40, No. 6, 148–156 (2016).
4. T. X. Ho, L. R. Schimleck, J. Dahlen, et al., Wood Sci. Technol., 56, No. 5, 1419–1437 (2022).
5. W. Qi, Z. Xiong, H. Tang, et al., J. Appl. Spectrosc., 88, No. 2, 461–467 (2021).
6. C. M. Popescu, P. Navi, M. I. P. Pena, et al., Spectrochim. Acta, A, 191, 405–412 (2018).
7. Z. Y. Wang, S. K. Yin, C. X. Li, et al., J. Northwest For. Univ., 34, No. 1, 229–236 (2019).
8. J. Wang, Y. J. Li, Y. C. Chen, et al., J. Nanjing For. Univ., Nat. Sci. Ed., 47, No. 3, 237–246 (2023).
9. X. A. Bai, Y. E. Liu, L. L. Xue, Laser J., 41, No. 10, 97–101 (2020).
10. B. Lu, X. F. Wang, N. H. Liu, et al., Infrared Phys. Technol., 111, 103482 (2020).
11. Y. D. Liu, Y. Rao, X. D. Sun, et al., Spectrosc. Spectral Anal., 40, No. 10, 3241–3246 (2020).
12. X. Y. Cui, Y. Sun, W. S. Cai, et al., Sci. China Chem., 62, No. 5, 583–591 (2019).
13. H. Li, M. S. Zhang, M. S. Shen, et al., Eur. J. Agron., 133, 126430 (2022).
14. M. I. Campos, G. Antolin, L. Deban, et al., Food Chem., 257, 237–242 (2018).
15. Y. H. Sun, Y. T. Fan, Spectrosc. Spectral Anal., 40, No. 6, 1690–1695 (2020).
16. X. D. Sun, P. Subedi, K. B. Walsh, Postharvest Biol. Technol., 162, 111–117 (2020).
17. Q. S. Zeng, J. X. Wang, Z. N. Xin, et al., J. Ordnance Equip. Eng., 42, No. 11, 252–258 (2021).
18. Y. R. Huang, J. Wang, N. Li, et al., Pattern Rec. Lett., 151, 76–84 (2021).
19. X. S. Wang, Y. D. Sun, M. G. Huang, et al., J. Northeast For. Univ., 43, No. 12, 82–85 (2015).
20. Z. Y. Zhang, Y. Li, Front. Plant Sci., 13, 1006292 (2022).
21. S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Neural Comp. Appl., 27, No. 2, 495–513 (2016).
22. H. Liang, M. Zhang, C. Gao, et al., Sensors-Basel, 18, No. 6, 1963 (2018).
Review
For citations:
Wang Z., Zhang Z., Williams R., Li Y. NIR Inversion Model of Larch Wood Density at Different Moisture Contents Based on MVO-BPNN. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):320. (In Russ.)