Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

NIR Inversion Model of Larch Wood Density at Different Moisture Contents Based on MVO-BPNN

Abstract

Owing to variation of moisture content, the larch wood basic density near-infrared (NIR) prediction model shows reduced accuracy and robustness, or even model failure. To solve this technical problem, a multi-verse-algorithm-optimized BP neural network (MVO-BPNN) prediction model is proposed to improve the accuracy of the model. The preprocessing effects of the Savitzky–Golay smoothing, detrending, and 15point moving average smoothing method were compared. The synergy interval partial least squares was used to extract the feature bands of the NIR spectra. Results showed that the prediction model based on MVO-BPNN was better than those based on BPNN and the genetic algorithm-optimized BPNN. It indicated that the NIR model based on the MVO-BPNN could effectively predict the basic density of wood with different moisture contents.

About the Authors

Z. Wang
School of Mechanical and Electrical Engineering, Northeast Forestry University
China

Harbin, Heilongjiang



Z. Zhang
School of Mechanical and Electrical Engineering, Northeast Forestry University
China

Harbin, Heilongjiang



R. A. Williams
School of Environment and Natural Resources, Ohio State University
United States

Columbus



Y. Li
School of Mechanical and Electrical Engineering, Northeast Forestry University
China

Harbin, Heilongjiang



References

1. Y. Yang, S. J. Shen, Sci. Technol. Rev., 28, No. 14, 113–117 (2010).

2. V. Nasir, S. Nourian, Z. Zhou, et al., Wood Sci. Technol., 53, No. 5, 1093–1109 (2019).

3. Y. Li, Y. X. Li, H. K. Xu, et al., J. Nanjing For. Univ., 40, No. 6, 148–156 (2016).

4. T. X. Ho, L. R. Schimleck, J. Dahlen, et al., Wood Sci. Technol., 56, No. 5, 1419–1437 (2022).

5. W. Qi, Z. Xiong, H. Tang, et al., J. Appl. Spectrosc., 88, No. 2, 461–467 (2021).

6. C. M. Popescu, P. Navi, M. I. P. Pena, et al., Spectrochim. Acta, A, 191, 405–412 (2018).

7. Z. Y. Wang, S. K. Yin, C. X. Li, et al., J. Northwest For. Univ., 34, No. 1, 229–236 (2019).

8. J. Wang, Y. J. Li, Y. C. Chen, et al., J. Nanjing For. Univ., Nat. Sci. Ed., 47, No. 3, 237–246 (2023).

9. X. A. Bai, Y. E. Liu, L. L. Xue, Laser J., 41, No. 10, 97–101 (2020).

10. B. Lu, X. F. Wang, N. H. Liu, et al., Infrared Phys. Technol., 111, 103482 (2020).

11. Y. D. Liu, Y. Rao, X. D. Sun, et al., Spectrosc. Spectral Anal., 40, No. 10, 3241–3246 (2020).

12. X. Y. Cui, Y. Sun, W. S. Cai, et al., Sci. China Chem., 62, No. 5, 583–591 (2019).

13. H. Li, M. S. Zhang, M. S. Shen, et al., Eur. J. Agron., 133, 126430 (2022).

14. M. I. Campos, G. Antolin, L. Deban, et al., Food Chem., 257, 237–242 (2018).

15. Y. H. Sun, Y. T. Fan, Spectrosc. Spectral Anal., 40, No. 6, 1690–1695 (2020).

16. X. D. Sun, P. Subedi, K. B. Walsh, Postharvest Biol. Technol., 162, 111–117 (2020).

17. Q. S. Zeng, J. X. Wang, Z. N. Xin, et al., J. Ordnance Equip. Eng., 42, No. 11, 252–258 (2021).

18. Y. R. Huang, J. Wang, N. Li, et al., Pattern Rec. Lett., 151, 76–84 (2021).

19. X. S. Wang, Y. D. Sun, M. G. Huang, et al., J. Northeast For. Univ., 43, No. 12, 82–85 (2015).

20. Z. Y. Zhang, Y. Li, Front. Plant Sci., 13, 1006292 (2022).

21. S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Neural Comp. Appl., 27, No. 2, 495–513 (2016).

22. H. Liang, M. Zhang, C. Gao, et al., Sensors-Basel, 18, No. 6, 1963 (2018).


Review

For citations:


Wang Z., Zhang Z., Williams R., Li Y. NIR Inversion Model of Larch Wood Density at Different Moisture Contents Based on MVO-BPNN. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):320. (In Russ.)

Views: 53


ISSN 0514-7506 (Print)