Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Porphyrins Basicity in the Lowest Excited Singlet S1 State: the Role of Peripheral Substitution and Macroheterocycle Structure

Abstract

The influence of peripheral substitution and the nature of the macroheterocyclic heteroatoms on the basicity of hydrophilic 5,10,15,20-tetraarylporphyrins in the lowest excited singlet S1 state has been studied using absorption and fluorescence spectroscopies. It has been established that in the proper porphyrins, the basicity of the lowest excited singlet S1 state decreases compared to the ground S0 state, and the difference in the basicity constants рKa depends on the nature of electronic communication between the macrocycle and peripheral substituents. In case of the inductive effect of substituents, the difference in the basicity constants рKa is small, while mesomeric effects lead to significant differences in рKa values. It has been shown that the cooperative nature of protonation, leading to almost simultaneous addition of two protons, is preserved in both cases. It has been established that the replacement of the pyrrole fragment with the thiophene one in the macroheterocycle leads to a decrease in cooperativity both in the ground S0 and in the lowest excited singlet S1 states. It has been found that in S1 state the basicity constants characterizing the addition of the second and the third protons by thia-substituted porphyrin differ significantly (рKa2 - рKa3 = 2), while in the ground state they are close. The activation entropy change ΔΔS‡ upon protonation of porphyrins in the lowest excited S1 state compared to that in the ground S0 state has been determined.

About the Authors

A. Yu. Shakel
Belarusian State Technological University
Belarus

Minsk



A. D. Melnik
Belarusian State Technological University
Belarus

Minsk



M. M. Melnik
Belarusian State Technological University
Belarus

Minsk



References

1. В. Г. Андрианов, О. В. Малкова, Д. Б. Березин. В кн. “Успехи химии порфиринов”, под ред. О. А. Голубчикова, Т. 3, СПб (2001) 107—129

2. Yu. B. Ivanova, S. G. Pukhovskaya, N. Zh. Mamardashvili, O. I. Koifman, M. M. Kruk. J. Mol. Liquids, 275 (2019) 491—498

3. Н. Н. Крук, С. Г. Пуховская, Ю. Б. Иванова, О. И. Койфман. Изв. АН. Сер. хим., 69 (2020) 1072—1075 [M. M. Kruk, S. G. Pukhovskaya, Yu. B. Ivanova, O. I. Koifman. Russ. Chem. Bull., Int. Ed., 69 (2020) 1072—1075]

4. С. Г. Пуховская, Ю. Б. Иванова, Н. Н. Крук, О. А. Голубчиков, О. И. Койфман. В кн. “Функциональные материалы на основе тетрапиррольных макрогетероциклических соединений”, под ред. О. И. Койфмана, Москва, ЛЕНАНД (2019) 63—101

5. A. Harriman, M.-C. Richoux. J. Photochem., 27 (1984) 205—214

6. T. Gensch, C. Viappiani, S. E. Braslavsky. J. Am. Chem. Soc., 121 (1999) 10573—10582

7. M. M. Kruk, S. E. Braslavsky. J. Phys. Chem. A, 110 (2006) 3414—3425

8. Yu. B. Ivanova, A. S. Semeikon, N. Zh. Mamardashvili. Russ. J. General Chem., 79 (2009) 1029—1034

9. M. M. Kruk, A. S. Starukhin, W. Maes. Macroheterocycles, 4 (2011) 69—79

10. S. Zakavi, R. Omidyan, L. Ebrahimi, F. Heidarizadi. Inorg. Chem. Commun., 14 (2011) 1827—1832

11. M. M. Kruk, S. E. Braslavsky. Photochem. Photobiol. Sci., 11 (2012) 972—978

12. M. Presselt, W. Dehaen, W. Maes, A. Klamt, T. J. Martinez, W. J. D. Beenken, M. M. Kruk. Phys. Chem. Chem. Phys., 17 (2015) 14096—14106

13. I. V. Vershilovskaya, S. Stefani, P. Verstappen, T. H. Ngo, I. G. Scheblykin, W. Dehaen, W. Maes, M. M. Kruk. Macroheterocycles, 10 (2017) 257—267

14. П. Г. Климович, А. Б. Крылов, Н. Н. Крук. Журн. прикл. спектр., 88 (2021) 25—33 [P. G. Klimovich, A. B. Krylov, M. M. Kruk. J. Appl. Spectr., 88 (2021) 19—26]

15. I. Hanyż, D.Wróbel. Photochem. Photobiol. Sci., 1 (2002) 126—132

16. I. Gupta, M. Ravikanth. Coord. Chem. Rev., 250 (2006) 468—518

17. Н. Н. Крук. Тр. БГТУ. Сер. 2, Хим. технол., биотехнол., геоэкол., 259 (2022) 150—155

18. Z. Grabowski, W. Rubaszewska. J. Chem. Soc., Farad. Trans. 1: Phys. Chem. Cond. Phases, 73 (1977) 11—28

19. A. Rosa, G. Ricciardi, E. J. Baerends. J. Phys. Chem. A, 110 (2006) 180—190

20. M. Gouterman. In: The Porphyrins, Ed. D. Dolphin, Vol. 3, New York (1978) 1—165

21. M. Meot-Ner, A. D. Adler. J. Am. Chem. Soc., 97 (1975) 5107—5111

22. Н. Н. Крук. Строение и оптические свойства тетрапиррольных соединений, Минск, БГТУ (2019)

23. S. L. Murov, I. Carmichael, G. L. Hug. Handbook of Photochemistry, 2-nd ed., New York (1993)

24. K. Hansch, A. Leo, R. W. Taft. Chem. Rev., 91 (1991) 165—195

25. L. Latos-Grazynski. In: The Porphyrin Handbook, Eds. K. M. Kadish, K. M. Smith, R. Guillard, New York (2000) 361—416

26. И. В. Вершиловская, Е. С. Люлькович, С. Г. Пуховская, Ю. Б. Иванова, А. О. Плотникова, Н.Н. Крук. Журн. прикл. спектр., 87 (2020) 181—188 [I. V. Vershilovskaya, L. S. Liulkovich, S. G. Pukhovskaya, Yu. B. Ivanova, A. O. Plotnikova, M. M. Kruk. J. Appl. Spectr., 87 (2020) 201—207]

27. Т. С. Жебит, А. Д. Мельник, С. Г. Пуховская, Ю. Б. Иванова, Н. Н. Крук. Журн. прикл. спектр., 89 (2022) 35—42 [T. S. Zhebit, A. D. Melnik, S. G. Pukhovskaya, Yu. B. Ivanova, M. M. Kruk. J. Appl. Spectr., 89 (2022) 28—34]


Review

For citations:


Shakel A.Yu., Melnik A.D., Melnik M.M. Porphyrins Basicity in the Lowest Excited Singlet S1 State: the Role of Peripheral Substitution and Macroheterocycle Structure. Zhurnal Prikladnoii Spektroskopii. 2024;91(3):327-334. (In Russ.)

Views: 76


ISSN 0514-7506 (Print)