Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectroscopy of Ammonium Occupying Symmetry-Inapropriate Positions in Crystal Structures of Salts

Abstract

The vibrational spectra of ammonium sulfates found in nature are studied: tschermigite NH4Al(SO4)2(H2O)12, lonecreekite NH4Fe(SO4)2(H2O)12, ammoniovoltaite (NH4)2Fe2+ 5Fe3+ 3Al(SO4)12(H2O)18, sabieite NH4Fe(SO4)2, ammonioalunite NH4Al3(SO4)2(OH)6 and ammoniojarosite NH4Fe3(SO4)2(OH)6, to determine the behavior of ammonium in positions with inappropriate symmetry. The disordering of the ammonium cation in salt crystals was revealed, caused by the need to adjust the tetrahedral cation to the symmetry of the position in order to preserve the symmetry of the crystal. If the symmetry group of the position is not a subgroup of the symmetry group of the tetrahedron, the NH4+ tetrahedron is distorted by the subgroup Hʹ common for Td and H, where H is the symmetry group of the position. Then, a polyhedron corresponding to the symmetry of the position is constructed from N = |H|/|Hʹ| (|H|, |Hʹ| – the orders of these groups) distorted tetrahedra. The ammonium cation under disordering has several orientations (N), the superposition of which formally gives a polyhedron corresponding to local symmetry. For the given salts, the maximum common subgroups are C3ν and C3. The distortion of ammonium leads to activation of ν1, ν2 [NH4+] vibrations in the infrared spectrum and splitting of ν3, ν4 [NH4+] but in the case of finding the ammonium in a centrallysymmetrical position, as in ammonioalunite and ammonioarosite, the effect is hardly noticeable. On the contrary, in ammonium alum, ammoniovoltaite, sabeyite the band ν4 [NH4+] is noticeably split, and vibrations of ν1, ν2 [NH4+] are clearly seen in the spectra.

About the Authors

A. V. Sergeeva
Institute of Volcanology and Seismology, FEB RAS
Russian Federation

Petropavlovsk-Kamchatsky



L. A. Polevoy
Institute of General and Inorganic Chemistry
Russian Federation

Moscow



M. B. Golikova
Institute of General and Inorganic Chemistry
Russian Federation

Moscow



M. A. Nazarova
Institute of Volcanology and Seismology, FEB RAS
Russian Federation

Petropavlovsk-Kamchatsky



A. V. Gladyshkina
Regional Center for Identification, Support, and Development of Abilities and Talents of Children and Youth “Orion”
Russian Federation

Voronezh



E. V. Kartasheva
Institute of Volcanology and Seismology, FEB RAS
Russian Federation

Petropavlovsk-Kamchatsky



A. A. Kuzmina
Institute of Volcanology and Seismology, FEB RAS
Russian Federation

Petropavlovsk-Kamchatsky



References

1. J. Parafiniuk, Ł. Kruszewski. Mineral. Mag., 74, N 4 (2010) 731, https://doi.org/10.1180/minmag.2010.074.4.731

2. V. Žáček, R. Škoda, F. Laufek et al. J. Geosci. (Czech Republic), 64, N 2 (2019) 149, https://doi.org/10.3190/jgeosci.283

3. M. Fastelli, P. Comodi, A. Maturilli et al. Minerals, 10, N 10 (2020) 902, https://doi.org/10.3390/min10100902

4. A. V. Sergeeva. J. Appl. Spectr., 86, N 3 (2019) 371—376, https://doi.org/10.1007/s10812-019-00828-y

5. A. V. Sergeeva, E. S. Zhitova, V. N. Bocharov. Vib. Spectrosc., 105 (2019) 102983, https://doi.org/10.1016/j.vibspec.2019.102983

6. A. V. Sergeeva, E. S. Zhitova, A. A. Nuzhdaev et al. Minerals, 10, N 9 (2020) 781, https://doi.org/10.3390/min10090781

7. A. V. Sergeeva, D. K. Denisov, M. A. Nazarova. Russ. Geol. Geophys., 60, N 11 (2019) 1267, https://doi.org/10.15372/RGG2019090

8. A. V. Sergeeva, E. S. Zhitova, A. A. Nuzhdaev et al. J. Volcanol. Seismol., 16, N 1 (2022) 35, https://doi.org/10.1134/S0742046321060099

9. S. K. Trumbo, M. E. Brown, K. P. Hand. Sci. Adv., 5, N 6 (2019), https://doi.org/10.1126/sciadv.aaw7123

10. J. B. Dalton, T. Cassidy, C. Paranicas et al. Planet. Space Sci., 77 (2013) 45, https://doi.org/10.1016/j.pss.2012.05.013

11. J. Hanley, J. B. Dalton, V. F. Chevrier et al. J. Geophys. Res. Planets, 119, N 11 (2014) 2370, https://doi.org/10.1002/2013JE004565

12. N. Ligier, C. Paranicas, J. Carter et al. Icarus, 333 (2019) 496, https://doi.org/10.1016/j.icarus.2019.06.013

13. T. B. McCord, G. B. Hansen, J.-P. Combe et al. Icarus, 209, N 2 (2010) 639, https://doi.org/10.1016/j.icarus.2010.05.026

14. A. Nathues, N. Schmedemann, G. Thangjam et al. Nat. Astron., 4, N 8 (2020) 794, https://doi.org/10.1038/s41550-020-1146-8

15. Z.He, R. Xu, C.Li et al. Space Sci. Rev., 217, N 2 (2021) 27, https://doi.org/10.1007/s11214-021-00804-z

16. N. W. Hinman, J. L. Bishop, V. C. Gulick et al. Am. Mineral., 106, N 8 (2021) 1237, https://doi.org/10.2138/am-2021-7415

17. P. Kumari, S. Soor, A. Shetty et al. IEEE Access, 11 (2023) 13121, https://doi.org/10.1109/ACCESS.2023.3243061

18. S. E. Schröder, H. U. Keller. Planet. Space Sci., 56, N 5 (2008) 753, https://doi.org/10.1016/j.pss.2007.10.011

19. J. Bernard, E. Quirico, O. Brissaud et al. Icarus, 185, N 1 (2006) 301, https://doi.org/10.1016/j.icarus.2006.06.004

20. R. M. Nelson, L. W. Kamp, D. L. Matson et al. Icarus, 199, N 2 (2009) 429, https://doi.org/10.1016/j.icarus.2008.08.013

21. F. Postberg, J. Schmidt, J. Hillier et al. Nature, 474, N 7353 (2011) 620, https://doi.org/10.1038/nature10175

22. M. G. Fox‐Powell, C. R. Cousins. J. Geophys. Res. Planets, 126, N 1 (2021), https://doi.org/10.1029/2020JE006628

23. S. Douté, R. Lopes, L. W. Kamp et al. Icarus, 169, N 1 (2004) 175, https://doi.org/10.1016/j.icarus.2004.02.001

24. T. B. McCord. J. Geophys. Res., 107, N 1 (2002) 5004, https://doi.org/10.1029/2000JE001453

25. H. Dong, L. Huang, L. Zhao et al. Natl. Sci. Rev., 9, N 10 (2022), https://doi.org/10.1093/nsr/nwac128

26. O. I. Korablev, Y. Dobrolensky, N. Evdokimova et al. Astrobiology, 17, N 6-7 (2017) 542, https://doi.org/10.1089/ast.2016.1543

27. F. Košek, A. Culka, A. Rousaki et al. Icarus, 366 (2021) 114533, https://doi.org/10.1016/j.icarus.2021.114533

28. O. Poch, I. Istiqomah, E. Quirico et al. Science, 367, N 6483 (2020) eaaw7462, https://doi.org/10.1126/science.aaw7462

29. K. Altwegg, H. Balsiger, N. Hänni et al. Nat. Astron., 4, N 5 (2020) 533, https://doi.org/10.1038/s41550-019-0991-9

30. M. Rubin, K. Altwegg, H. Balsiger et al. Science, 348, N 6231 (2015) 232—235, https://doi.org/10.1126/science.aaa6100

31. A. Raponi, M. Ciarniello, F. Capaccioni et al. Nat. Astron., 4, N 5 (2020) 500, https://doi.org/10.1038/s41550-019-0992-8

32. H. H. Kaplan, D. S. Lauretta, A. A. Simon et al. Science, 370, N 6517 (2020) eabc3557, https://doi.org/10.1126/science.abc3557

33. M. Fastelli, P. Comodi, B. Schmitt et al. Icarus, 382 (2022) 115055, https://doi.org/10.1016/j.icarus.2022.115055

34. A. C. Thakur, R. C. Remsing. ACS Earth Sp. Chem., 7, N 2 (2023) 479. https://doi.org/10.1021/acsearthspacechem.2c00327

35. H. A. Levy, S. W. Peterson. Phys. Rev., 86, N 5 (1952) 766, https://doi.org/10.1103/PhysRev.86.766

36. A. Udovenko, N. Laptash, I. Maslennikova. J. Fluor. Chem., 124, N 1 (2003) 5, https://doi.org/10.1016/S0022-1139(03)00166-0

37. L. S. Smirnov, A. I. Baranov, L. A. Shuvalov et al. Phys. Solid State, 43, N 1 (2001) 117, https://doi.org/10.1134/1.1340197

38. M. C. De Sanctis, E. Ammannito, A. Raponi et al. Nat. Astron., 4, N 8 (2020) 786, https://doi.org/10.1038/s41550-020-1138-8

39. E. C. Thomas, T. H. Vu, R. Hodyss et al. Icarus, 320 (2019) 150, https://doi.org/10.1016/j.icarus.2017.12.038

40. T. H. Vu, R. Hodyss, P. V. Johnson et al. Planet. Space Sci., 141 (2017) 73, https://doi.org/10.1016/j.pss.2017.04.014

41. F. Košek, A. Culka, L. Fornasini et al. J. Raman Spectrosc., 51, N 7 (2020) 1186, https://doi.org/10.1002/jrs.5873

42. F. Košek, H. G. M. Edwards, J. Jehlička. J. Raman Spectrosc., 51, N 9 (2020) 1454, https://doi.org/10.1002/jrs.5625

43. F. Košek, A. Culka, P. Drahota et al. J. Raman Spectrosc., 48, N 8 (2017) 1085, https://doi.org/10.1002/jrs.5174

44. J. Jehlička, A. Culka, F. Košek. J. Raman Spectrosc., 48, N 11 (2017) 1583, https://doi.org/10.1002/jrs.5105

45. Р. Фларри. Группы симметрии. Теория и химическое приложение, пер. с англ., Москва, Мир (1983)

46. А. Н. Лазарев. Колебательные спектры и строение силикатов, Ленинград, Наука (1968)

47. М. И. Каргаполов, Ю. И. Мерзляков. Основы теории групп, 3-е изд., перераб. и доп., Москва, Наука (1982)

48. И. А. Коробейникова, Г. Б. Прончев, А. Н. Ермаков. Журн. аналит. химии, 66, № 8 (2011) 854

49. N. S. Sickerman, S. M. Peterson, J. W. Ziller et al. Chem. Commun., 50, N 19 (2014) 2515, https://doi.org/10.1039/C3CC48804G

50. J. W. Phair, S. P. S. Badwal. Ionics (Kiel), 12, N 2 (2006) 103, https://doi.org/10.1007/s11581-006-0016-4

51. D. I. Kolokolov, D. Lim, H. Kitagawa. Chem. Rec., 20, N 11 (2020) 1297, https://doi.org/10.1002/tcr.202000072

52. D. K. Nordstrom. Geochim. Cosmochim. Acta, 46, N 4 (1982) 681, https://doi.org/10.1016/0016-7037(82)90168-5

53. M. Henry, J. P. Jolivet, J. Livage. In: Chem. Spectrosc. Appl. Sol-Gel Glas., Springer-Verlag, BerlinHeidelberg (1992) 153—206, https://doi.org/10.1007/BFb0036968


Review

For citations:


Sergeeva A.V., Polevoy L.A., Golikova M.B., Nazarova M.A., Gladyshkina A.V., Kartasheva E.V., Kuzmina A.A. Spectroscopy of Ammonium Occupying Symmetry-Inapropriate Positions in Crystal Structures of Salts. Zhurnal Prikladnoii Spektroskopii. 2024;91(3):394-408. (In Russ.)

Views: 100


ISSN 0514-7506 (Print)