Spectroscopy of Ammonium Occupying Symmetry-Inapropriate Positions in Crystal Structures of Salts
Abstract
The vibrational spectra of ammonium sulfates found in nature are studied: tschermigite NH4Al(SO4)2(H2O)12, lonecreekite NH4Fe(SO4)2(H2O)12, ammoniovoltaite (NH4)2Fe2+ 5Fe3+ 3Al(SO4)12(H2O)18, sabieite NH4Fe(SO4)2, ammonioalunite NH4Al3(SO4)2(OH)6 and ammoniojarosite NH4Fe3(SO4)2(OH)6, to determine the behavior of ammonium in positions with inappropriate symmetry. The disordering of the ammonium cation in salt crystals was revealed, caused by the need to adjust the tetrahedral cation to the symmetry of the position in order to preserve the symmetry of the crystal. If the symmetry group of the position is not a subgroup of the symmetry group of the tetrahedron, the NH4+ tetrahedron is distorted by the subgroup Hʹ common for Td and H, where H is the symmetry group of the position. Then, a polyhedron corresponding to the symmetry of the position is constructed from N = |H|/|Hʹ| (|H|, |Hʹ| – the orders of these groups) distorted tetrahedra. The ammonium cation under disordering has several orientations (N), the superposition of which formally gives a polyhedron corresponding to local symmetry. For the given salts, the maximum common subgroups are C3ν and C3. The distortion of ammonium leads to activation of ν1, ν2 [NH4+] vibrations in the infrared spectrum and splitting of ν3, ν4 [NH4+] but in the case of finding the ammonium in a centrallysymmetrical position, as in ammonioalunite and ammonioarosite, the effect is hardly noticeable. On the contrary, in ammonium alum, ammoniovoltaite, sabeyite the band ν4 [NH4+] is noticeably split, and vibrations of ν1, ν2 [NH4+] are clearly seen in the spectra.
About the Authors
A. V. SergeevaRussian Federation
Petropavlovsk-Kamchatsky
L. A. Polevoy
Russian Federation
Moscow
M. B. Golikova
Russian Federation
Moscow
M. A. Nazarova
Russian Federation
Petropavlovsk-Kamchatsky
A. V. Gladyshkina
Russian Federation
Voronezh
E. V. Kartasheva
Russian Federation
Petropavlovsk-Kamchatsky
A. A. Kuzmina
Russian Federation
Petropavlovsk-Kamchatsky
References
1. J. Parafiniuk, Ł. Kruszewski. Mineral. Mag., 74, N 4 (2010) 731, https://doi.org/10.1180/minmag.2010.074.4.731
2. V. Žáček, R. Škoda, F. Laufek et al. J. Geosci. (Czech Republic), 64, N 2 (2019) 149, https://doi.org/10.3190/jgeosci.283
3. M. Fastelli, P. Comodi, A. Maturilli et al. Minerals, 10, N 10 (2020) 902, https://doi.org/10.3390/min10100902
4. A. V. Sergeeva. J. Appl. Spectr., 86, N 3 (2019) 371—376, https://doi.org/10.1007/s10812-019-00828-y
5. A. V. Sergeeva, E. S. Zhitova, V. N. Bocharov. Vib. Spectrosc., 105 (2019) 102983, https://doi.org/10.1016/j.vibspec.2019.102983
6. A. V. Sergeeva, E. S. Zhitova, A. A. Nuzhdaev et al. Minerals, 10, N 9 (2020) 781, https://doi.org/10.3390/min10090781
7. A. V. Sergeeva, D. K. Denisov, M. A. Nazarova. Russ. Geol. Geophys., 60, N 11 (2019) 1267, https://doi.org/10.15372/RGG2019090
8. A. V. Sergeeva, E. S. Zhitova, A. A. Nuzhdaev et al. J. Volcanol. Seismol., 16, N 1 (2022) 35, https://doi.org/10.1134/S0742046321060099
9. S. K. Trumbo, M. E. Brown, K. P. Hand. Sci. Adv., 5, N 6 (2019), https://doi.org/10.1126/sciadv.aaw7123
10. J. B. Dalton, T. Cassidy, C. Paranicas et al. Planet. Space Sci., 77 (2013) 45, https://doi.org/10.1016/j.pss.2012.05.013
11. J. Hanley, J. B. Dalton, V. F. Chevrier et al. J. Geophys. Res. Planets, 119, N 11 (2014) 2370, https://doi.org/10.1002/2013JE004565
12. N. Ligier, C. Paranicas, J. Carter et al. Icarus, 333 (2019) 496, https://doi.org/10.1016/j.icarus.2019.06.013
13. T. B. McCord, G. B. Hansen, J.-P. Combe et al. Icarus, 209, N 2 (2010) 639, https://doi.org/10.1016/j.icarus.2010.05.026
14. A. Nathues, N. Schmedemann, G. Thangjam et al. Nat. Astron., 4, N 8 (2020) 794, https://doi.org/10.1038/s41550-020-1146-8
15. Z.He, R. Xu, C.Li et al. Space Sci. Rev., 217, N 2 (2021) 27, https://doi.org/10.1007/s11214-021-00804-z
16. N. W. Hinman, J. L. Bishop, V. C. Gulick et al. Am. Mineral., 106, N 8 (2021) 1237, https://doi.org/10.2138/am-2021-7415
17. P. Kumari, S. Soor, A. Shetty et al. IEEE Access, 11 (2023) 13121, https://doi.org/10.1109/ACCESS.2023.3243061
18. S. E. Schröder, H. U. Keller. Planet. Space Sci., 56, N 5 (2008) 753, https://doi.org/10.1016/j.pss.2007.10.011
19. J. Bernard, E. Quirico, O. Brissaud et al. Icarus, 185, N 1 (2006) 301, https://doi.org/10.1016/j.icarus.2006.06.004
20. R. M. Nelson, L. W. Kamp, D. L. Matson et al. Icarus, 199, N 2 (2009) 429, https://doi.org/10.1016/j.icarus.2008.08.013
21. F. Postberg, J. Schmidt, J. Hillier et al. Nature, 474, N 7353 (2011) 620, https://doi.org/10.1038/nature10175
22. M. G. Fox‐Powell, C. R. Cousins. J. Geophys. Res. Planets, 126, N 1 (2021), https://doi.org/10.1029/2020JE006628
23. S. Douté, R. Lopes, L. W. Kamp et al. Icarus, 169, N 1 (2004) 175, https://doi.org/10.1016/j.icarus.2004.02.001
24. T. B. McCord. J. Geophys. Res., 107, N 1 (2002) 5004, https://doi.org/10.1029/2000JE001453
25. H. Dong, L. Huang, L. Zhao et al. Natl. Sci. Rev., 9, N 10 (2022), https://doi.org/10.1093/nsr/nwac128
26. O. I. Korablev, Y. Dobrolensky, N. Evdokimova et al. Astrobiology, 17, N 6-7 (2017) 542, https://doi.org/10.1089/ast.2016.1543
27. F. Košek, A. Culka, A. Rousaki et al. Icarus, 366 (2021) 114533, https://doi.org/10.1016/j.icarus.2021.114533
28. O. Poch, I. Istiqomah, E. Quirico et al. Science, 367, N 6483 (2020) eaaw7462, https://doi.org/10.1126/science.aaw7462
29. K. Altwegg, H. Balsiger, N. Hänni et al. Nat. Astron., 4, N 5 (2020) 533, https://doi.org/10.1038/s41550-019-0991-9
30. M. Rubin, K. Altwegg, H. Balsiger et al. Science, 348, N 6231 (2015) 232—235, https://doi.org/10.1126/science.aaa6100
31. A. Raponi, M. Ciarniello, F. Capaccioni et al. Nat. Astron., 4, N 5 (2020) 500, https://doi.org/10.1038/s41550-019-0992-8
32. H. H. Kaplan, D. S. Lauretta, A. A. Simon et al. Science, 370, N 6517 (2020) eabc3557, https://doi.org/10.1126/science.abc3557
33. M. Fastelli, P. Comodi, B. Schmitt et al. Icarus, 382 (2022) 115055, https://doi.org/10.1016/j.icarus.2022.115055
34. A. C. Thakur, R. C. Remsing. ACS Earth Sp. Chem., 7, N 2 (2023) 479. https://doi.org/10.1021/acsearthspacechem.2c00327
35. H. A. Levy, S. W. Peterson. Phys. Rev., 86, N 5 (1952) 766, https://doi.org/10.1103/PhysRev.86.766
36. A. Udovenko, N. Laptash, I. Maslennikova. J. Fluor. Chem., 124, N 1 (2003) 5, https://doi.org/10.1016/S0022-1139(03)00166-0
37. L. S. Smirnov, A. I. Baranov, L. A. Shuvalov et al. Phys. Solid State, 43, N 1 (2001) 117, https://doi.org/10.1134/1.1340197
38. M. C. De Sanctis, E. Ammannito, A. Raponi et al. Nat. Astron., 4, N 8 (2020) 786, https://doi.org/10.1038/s41550-020-1138-8
39. E. C. Thomas, T. H. Vu, R. Hodyss et al. Icarus, 320 (2019) 150, https://doi.org/10.1016/j.icarus.2017.12.038
40. T. H. Vu, R. Hodyss, P. V. Johnson et al. Planet. Space Sci., 141 (2017) 73, https://doi.org/10.1016/j.pss.2017.04.014
41. F. Košek, A. Culka, L. Fornasini et al. J. Raman Spectrosc., 51, N 7 (2020) 1186, https://doi.org/10.1002/jrs.5873
42. F. Košek, H. G. M. Edwards, J. Jehlička. J. Raman Spectrosc., 51, N 9 (2020) 1454, https://doi.org/10.1002/jrs.5625
43. F. Košek, A. Culka, P. Drahota et al. J. Raman Spectrosc., 48, N 8 (2017) 1085, https://doi.org/10.1002/jrs.5174
44. J. Jehlička, A. Culka, F. Košek. J. Raman Spectrosc., 48, N 11 (2017) 1583, https://doi.org/10.1002/jrs.5105
45. Р. Фларри. Группы симметрии. Теория и химическое приложение, пер. с англ., Москва, Мир (1983)
46. А. Н. Лазарев. Колебательные спектры и строение силикатов, Ленинград, Наука (1968)
47. М. И. Каргаполов, Ю. И. Мерзляков. Основы теории групп, 3-е изд., перераб. и доп., Москва, Наука (1982)
48. И. А. Коробейникова, Г. Б. Прончев, А. Н. Ермаков. Журн. аналит. химии, 66, № 8 (2011) 854
49. N. S. Sickerman, S. M. Peterson, J. W. Ziller et al. Chem. Commun., 50, N 19 (2014) 2515, https://doi.org/10.1039/C3CC48804G
50. J. W. Phair, S. P. S. Badwal. Ionics (Kiel), 12, N 2 (2006) 103, https://doi.org/10.1007/s11581-006-0016-4
51. D. I. Kolokolov, D. Lim, H. Kitagawa. Chem. Rec., 20, N 11 (2020) 1297, https://doi.org/10.1002/tcr.202000072
52. D. K. Nordstrom. Geochim. Cosmochim. Acta, 46, N 4 (1982) 681, https://doi.org/10.1016/0016-7037(82)90168-5
53. M. Henry, J. P. Jolivet, J. Livage. In: Chem. Spectrosc. Appl. Sol-Gel Glas., Springer-Verlag, BerlinHeidelberg (1992) 153—206, https://doi.org/10.1007/BFb0036968
Review
For citations:
Sergeeva A.V., Polevoy L.A., Golikova M.B., Nazarova M.A., Gladyshkina A.V., Kartasheva E.V., Kuzmina A.A. Spectroscopy of Ammonium Occupying Symmetry-Inapropriate Positions in Crystal Structures of Salts. Zhurnal Prikladnoii Spektroskopii. 2024;91(3):394-408. (In Russ.)