Temperature Dependence of the Optical Reflection Spectra of CuInSe2 Single Crystals with a Chalcopyrite Structure
Abstract
The resonances of free excitons A ~ 1.0409 eV, B ~ 1.0445 eV and C ~ 1.2690 eV are detected in the reflection spectra of single crystals of the direct-gap compound CuInSe2 at temperature of 8.6 K. It has been established that the resolving of these resonances A, B and C can be explained by the removal of degeneracy from the energy levels of the valence band due to the influence of crystal field and spin-orbit interaction in the tetragonal lattice of CuInSe2 with ΔCF ~ 5.4 meV and ΔSO ~ 224 meV. Based on measurements of the temperature dependence of the reflection spectra in the range of 8.6–90 K an effect of increasing the energy position of the resonances of free excitons A and B caused by the deformation of the unit cell (tetragonal stretching) of the CuInSe2 lattice with a chalcopyrite structure has been discovered. Based on the temperature quenching of the exciton resonances A ~ 1.0409 eV and B ~ 1.0445 eV the binding energy of these excitons has been determined to be 10.7 and 15.2 meV, respectively.
About the Authors
O. M. BorodavchenkoBelarus
Minsk
V. D. Zhivulko
Belarus
Minsk
I. D. Myalik
Belarus
Minsk
A. V. Mudryi
Belarus
Minsk
M. V. Yakushev
Russian Federation
Ekaterinburg
References
1. M. A. Green, E. D. Dunlop, M. Yoshita, N. Kopidacis, K. Bothe, G. Siefer, X. Xao. Prog. Photovolt. Res. Appl., 31 (2023) 651—653
2. P. J. Jackson, D. Hariskos, R. Wuerz, W. Wishmann, P. Powalla. Phys. Stat. Sol. PRL, 10, N 3 (2016) 583—586
3. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sigumoto. IEEE J. Photovolt., 9, N 6 (2019) 1863—1867
4. U. Banik, K. Sasaki, N. Reininghaus, K. Gehrke, M. Vehse, M. Sznajder, T. Sproewitz, C. Agert. Solar Energy Mater. Solar Cells, 209 (2020) 110456(1—8)
5. S. Hamtaei, G. Brammertz, J. Poortmans, B. Vermang. npj Flexible electron., 7, N 1 (2023) 36(1—12)
6. S. Siebentritt, T. P. Weiss. Sci. China-Phys. Mech. Astron., 66, N 1 (2023) 217301(1—15)
7. M. Yamaguchi. J. Appl. Phys., 78, N 3 (1995) 1476—1480
8. A. Jasenek, U. Rau. J. Appl. Phys., 90, N 2 (2001) 650—658
9. M. Yakushev, Y. Feofanov, J. Krustok, M. Grossberg, A. Mudryi. Bull. Russ. Academy Sci.: Physics, 70, N 6 (2006) 913—923
10. M. Imaizumi, T. Sumita, S. Kawakita, K. Aoyama, O. Anzawa, T. Aburaya, T. Hisamatsu, S. Matsuda. Prog. Photovolt. Res. Appl., 13 (2005) 93—102
11. R. D. Tomlinson. Solar Cells, 16 (1986) 17—26
12. P. Deus, H. Neumann, G. Kuhn, B. Hinze. Phys. Status Solidi (a), 80 (1983) 205—209
13. W. Paszkowicz, R. Minikayev, P. Piszora, D. Trots, M. Knapp, T. Wojciechowski, R. Bacewicz. Appl. Phys. A, 116, N 2 (2014) 767—780
14. L. J. Shay, J. H. Wernick. Ternary Chalcopyrite Semiconductors – Growth, Electronic Properties, and Applications, Pergamon, Oxford (1975)
15. J. L. Shay, B. Tell. Surface Science, 37 (1973) 748—762 [16] J. J. Hopfield. J. Phys. Chem. Solids, 15 (1960) 97—107
16. S. Chichibu, T. Mizutani, K. Murakami, T. Shioda, T. Kurafuji, H. Nakanishi, S. Niki, P. J. Fons, A. Yamada. J. Appl. Phys., 83, N 7 (1998) 3678—3689
17. S. Shirakata, H. Miyaki. Phys. Status Solidi (a), 203, N 11 (2006) 2897—2903
18. K. Chatrophorm, P. Yoode, P. Songpongs, K. Chityuttakan, K. Sayavong, S. Wongmanerod, P. Holtz. Jpn. J. Appl. Phys., Part 2, 37 (1998) L269—L271
19. A. V. Mudryi, M. V. Yakushev, R. D. Tomlinson, A. E. Hill, R. D. Pilkingtom, I. V. Bodnar, I. A. Victorov, V. F. Gremenok. Semiconductors, 34, N 5 (2000) 550—554
20. A. V. Mudryi, I. V. Bodnar, I. A. Viktorov, V. F. Gremenok, M. V. Yakushev, R. D. Tomlinson, A. E. Hill, R. D. Pilkington. Appl. Phys. Lett., 77 (2000) 2542—2544
21. A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevskii, M. V. Yakushev, R. W. Martin. Thin Solid Films, 431-432 (2003) 193—196
22. M. V. Yakushev, A. V. Rodina, R. P. Seisyan, Yu. E. Kitaev, S. A. Vaganov, M. A. Abdullaev, A. V. Mudryi, T. V. Kuznetsova, C. Faugeras, R. W. Martin. Phys. Rev. B, 100 (2019) 235202(1—7)
23. K. P. Korona, A. Wysmołek, K. Pakuła, R. Stępniewski, J. M. Baranowski, I. Grzegory, B. Łucznik, M. Wroblewski, S. Porowski. Appl. Phys. Lett., 69, N 6 (1996) 788—790
24. F. Luckert, M. V. Yakushev, C. Faugeras, A. V. Karotki, A. V. Mudryi, R. W. Martin. J. Appl. Phys., 111 (2012) 093507(1—8)
25. M. V. Yakushev, R. W. Martin, A. V. Mudryi. Phys. Status Solidi (c), 6, N 5 (2009) 1082—1085
26. N. Yamamoto, H. Horinaka, K. Okada, T. Miyauchi. Jpn. J. Appl. Phys., 16, N 10 (1977) 1817—1822
27. P. Y. Yu, M. Cardona. Fundamentals of Semiconductors: Physics and Material Properties, Springer Science, Business Media (2010)
28. J. Bhosale, A. K. Ramdas, A. Burger, A. Munoz, A. H. Romero, M. Cardona, R. Lauck, R. K. Kremer. Phys. Rev. B, 86 (2012) 195208(1—10)
29. M. V. Yakushev, F. Luckert, C. Faugeras, A. V. Karotki, A. V. Mudryi, R. W. Martin. Appl. Phys. Lett., 97 (2010) 152110(1—3)
30. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart. J. Appl. Phys., 86 (1999) 3721—3728
Review
For citations:
Borodavchenko O.M., Zhivulko V.D., Myalik I.D., Mudryi A.V., Yakushev M.V. Temperature Dependence of the Optical Reflection Spectra of CuInSe2 Single Crystals with a Chalcopyrite Structure. Zhurnal Prikladnoii Spektroskopii. 2024;91(3):409-416.