Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Temperature Dependence of the Optical Reflection Spectra of CuInSe2 Single Crystals with a Chalcopyrite Structure

Abstract

The resonances of free excitons A ~ 1.0409 eV, B ~ 1.0445 eV and C ~ 1.2690 eV are detected in the reflection spectra of single crystals of the direct-gap compound CuInSe2 at temperature of 8.6 K. It has been established that the resolving of these resonances A, B and C can be explained by the removal of degeneracy from the energy levels of the valence band due to the influence of crystal field and spin-orbit interaction in the tetragonal lattice of CuInSe2 with ΔCF ~ 5.4 meV and ΔSO ~ 224 meV. Based on measurements of the temperature dependence of the reflection spectra in the range of 8.6–90 K an effect of increasing the energy position of the resonances of free excitons A and B caused by the deformation of the unit cell (tetragonal stretching) of the CuInSe2 lattice with a chalcopyrite structure has been discovered. Based on the temperature quenching of the exciton resonances A ~ 1.0409 eV and B ~ 1.0445 eV the binding energy of these excitons has been determined to be 10.7 and 15.2 meV, respectively.

About the Authors

O. M. Borodavchenko
Scientific-Practical Material Research Centre of the National Academy of Sciences of Belarus
Belarus

Minsk



V. D. Zhivulko
Scientific-Practical Material Research Centre of the National Academy of Sciences of Belarus
Belarus

Minsk



I. D. Myalik
Scientific-Practical Material Research Centre of the National Academy of Sciences of Belarus
Belarus

Minsk



A. V. Mudryi
Scientific-Practical Material Research Centre of the National Academy of Sciences of Belarus
Belarus

Minsk



M. V. Yakushev
M. N. Mikheev Institute of Metal Physics of the Ural Branch of Russian Academy of Sciences; Ural Federal University; Institute of Solid State Chemistry of the Ural Branch of Russian Academy of Sciences
Russian Federation

Ekaterinburg



References

1. M. A. Green, E. D. Dunlop, M. Yoshita, N. Kopidacis, K. Bothe, G. Siefer, X. Xao. Prog. Photovolt. Res. Appl., 31 (2023) 651—653

2. P. J. Jackson, D. Hariskos, R. Wuerz, W. Wishmann, P. Powalla. Phys. Stat. Sol. PRL, 10, N 3 (2016) 583—586

3. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sigumoto. IEEE J. Photovolt., 9, N 6 (2019) 1863—1867

4. U. Banik, K. Sasaki, N. Reininghaus, K. Gehrke, M. Vehse, M. Sznajder, T. Sproewitz, C. Agert. Solar Energy Mater. Solar Cells, 209 (2020) 110456(1—8)

5. S. Hamtaei, G. Brammertz, J. Poortmans, B. Vermang. npj Flexible electron., 7, N 1 (2023) 36(1—12)

6. S. Siebentritt, T. P. Weiss. Sci. China-Phys. Mech. Astron., 66, N 1 (2023) 217301(1—15)

7. M. Yamaguchi. J. Appl. Phys., 78, N 3 (1995) 1476—1480

8. A. Jasenek, U. Rau. J. Appl. Phys., 90, N 2 (2001) 650—658

9. M. Yakushev, Y. Feofanov, J. Krustok, M. Grossberg, A. Mudryi. Bull. Russ. Academy Sci.: Physics, 70, N 6 (2006) 913—923

10. M. Imaizumi, T. Sumita, S. Kawakita, K. Aoyama, O. Anzawa, T. Aburaya, T. Hisamatsu, S. Matsuda. Prog. Photovolt. Res. Appl., 13 (2005) 93—102

11. R. D. Tomlinson. Solar Cells, 16 (1986) 17—26

12. P. Deus, H. Neumann, G. Kuhn, B. Hinze. Phys. Status Solidi (a), 80 (1983) 205—209

13. W. Paszkowicz, R. Minikayev, P. Piszora, D. Trots, M. Knapp, T. Wojciechowski, R. Bacewicz. Appl. Phys. A, 116, N 2 (2014) 767—780

14. L. J. Shay, J. H. Wernick. Ternary Chalcopyrite Semiconductors – Growth, Electronic Properties, and Applications, Pergamon, Oxford (1975)

15. J. L. Shay, B. Tell. Surface Science, 37 (1973) 748—762 [16] J. J. Hopfield. J. Phys. Chem. Solids, 15 (1960) 97—107

16. S. Chichibu, T. Mizutani, K. Murakami, T. Shioda, T. Kurafuji, H. Nakanishi, S. Niki, P. J. Fons, A. Yamada. J. Appl. Phys., 83, N 7 (1998) 3678—3689

17. S. Shirakata, H. Miyaki. Phys. Status Solidi (a), 203, N 11 (2006) 2897—2903

18. K. Chatrophorm, P. Yoode, P. Songpongs, K. Chityuttakan, K. Sayavong, S. Wongmanerod, P. Holtz. Jpn. J. Appl. Phys., Part 2, 37 (1998) L269—L271

19. A. V. Mudryi, M. V. Yakushev, R. D. Tomlinson, A. E. Hill, R. D. Pilkingtom, I. V. Bodnar, I. A. Victorov, V. F. Gremenok. Semiconductors, 34, N 5 (2000) 550—554

20. A. V. Mudryi, I. V. Bodnar, I. A. Viktorov, V. F. Gremenok, M. V. Yakushev, R. D. Tomlinson, A. E. Hill, R. D. Pilkington. Appl. Phys. Lett., 77 (2000) 2542—2544

21. A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevskii, M. V. Yakushev, R. W. Martin. Thin Solid Films, 431-432 (2003) 193—196

22. M. V. Yakushev, A. V. Rodina, R. P. Seisyan, Yu. E. Kitaev, S. A. Vaganov, M. A. Abdullaev, A. V. Mudryi, T. V. Kuznetsova, C. Faugeras, R. W. Martin. Phys. Rev. B, 100 (2019) 235202(1—7)

23. K. P. Korona, A. Wysmołek, K. Pakuła, R. Stępniewski, J. M. Baranowski, I. Grzegory, B. Łucznik, M. Wroblewski, S. Porowski. Appl. Phys. Lett., 69, N 6 (1996) 788—790

24. F. Luckert, M. V. Yakushev, C. Faugeras, A. V. Karotki, A. V. Mudryi, R. W. Martin. J. Appl. Phys., 111 (2012) 093507(1—8)

25. M. V. Yakushev, R. W. Martin, A. V. Mudryi. Phys. Status Solidi (c), 6, N 5 (2009) 1082—1085

26. N. Yamamoto, H. Horinaka, K. Okada, T. Miyauchi. Jpn. J. Appl. Phys., 16, N 10 (1977) 1817—1822

27. P. Y. Yu, M. Cardona. Fundamentals of Semiconductors: Physics and Material Properties, Springer Science, Business Media (2010)

28. J. Bhosale, A. K. Ramdas, A. Burger, A. Munoz, A. H. Romero, M. Cardona, R. Lauck, R. K. Kremer. Phys. Rev. B, 86 (2012) 195208(1—10)

29. M. V. Yakushev, F. Luckert, C. Faugeras, A. V. Karotki, A. V. Mudryi, R. W. Martin. Appl. Phys. Lett., 97 (2010) 152110(1—3)

30. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart. J. Appl. Phys., 86 (1999) 3721—3728


Review

For citations:


Borodavchenko O.M., Zhivulko V.D., Myalik I.D., Mudryi A.V., Yakushev M.V. Temperature Dependence of the Optical Reflection Spectra of CuInSe2 Single Crystals with a Chalcopyrite Structure. Zhurnal Prikladnoii Spektroskopii. 2024;91(3):409-416.

Views: 85


ISSN 0514-7506 (Print)