Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Density Functional Theory Investigations of Optoelectronic Characteristics of MoS, MoSe, and MoSSe Monolayers

Abstract

Two-dimensional (2D) layer materials have illustrated prominent interest with various usages in optoelectronics, nanoelectronics, and solar cells. Numerous physical behaviors of 2D materials have been explored for a category of monolayer transition metal dichalcogenides (TMDCs). These involve molybdenum disulfide (MoS2), molybdenum diselenite (MoSe2) and MoSSe janus monolayers that have gained remarkable interest because of their distinguished optoelectronic features. Particularly, the band gap transitions of these TMDC materials undergo from indirect band gap transition to direct one by reducing the dimension from the bulk-counterpart to their MoS2, MoSe2, and MoSSe monolayers, respectively. To this end, we conducted a comparative investigation and analysis of the electronic structure behaviors as well as optical spectra of MoS2, MoSe2, and MoSSe monolayers. The optical absorption spectra of these 2D-materials are ranging between the infrared (IR) and visible regimes for MoS2, MoSe2, and MoSSe sheets and the absorption of light emerges between 1.6 and 1.8 eV, corresponding to their semiconducting character. These 2D-materials are potential candidates for solar cells and optoelectronic applications.

About the Authors

A. Alshammari
King Saud University
Russian Federation

Department of Physics and Astronomy, College of Science, 

Riyadh



H. Alshehri
King Saud University
Russian Federation

Department of Physics and Astronomy, College of Science, 

Riyadh



F. Barakat
King Saud University
Russian Federation

Department of Physics and Astronomy, College of Science, 

Riyadh



A. Laref
King Saud University
Russian Federation

Department of Physics and Astronomy, College of Science, 

Riyadh



References

1. S. Z. Butler, et al., Acc. Nano, 7, 2898–2926 (2013).

2. K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett., 105, 136805 (2010).

3. Y. Li, Z. Zhou, S. Zhang, Z. Chen, J. Am. Chem. Soc., 130, 16739–16744 (2008).

4. Z. X. Gan, L. Z. Liu, H. Y. Wu, Y. L. Hao, Y. Shan, X. L. Wu, P. K. Chu, Appl. Phys. Lett., 106, 233113 (2015).

5. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. USA, 102, 10451–10453 (2005).

6. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol., 6, 147–150 (2011).

7. L. Yang, X. Cui, J. Zhang, K. Wang, M. Shen, S. Zeng, S. A. Dayeh, L. Feng, B. Xiang, Sci. Rep., 4, 5649 (2014).

8. X. Zhu, J. Xiang, J. Li, C. Feng, P. Liu, B. Xiang, J. Colloid Interface Sci., 511, 209–214 (2018).

9. Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, et al., Nano Lett., 13, 1852–1857 (2013).

10. J. Huang, L. Yang, D. Liu, J. Chen, Q. Fu, Y. Xiong, F. Lin, B. Xiang, Nanoscale, 7, 4193–4198 (2015).

11. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol., 7, 699–712 (2012).

12. Y. C. Lin, D. O. Dumcenco, Y. S. Huang, K. Suenaga, Nat. Nanotechnol., 9, 391–396 (2014).

13. L. Yang, H. Hong, Q. Fu, Y. Huang, J. Zhang, X. Cui, Z. Fan, K. Liu, B. Xiang, ACS-Nano, 9, 6478–6483 (2015).

14. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Phys. Rev. Lett., 85, 146–149 (2000).

15. S. Helveg, J. V. Lauritsen, E. Lægsgaard, I. Stensgaard, J. K. Nørskov, B. S. Clausen, H. Topsøe, F. Besenbacher, Phys. Rev. Lett., 84, 951–954 (2000).

16. C. Kisielowski, Q. M. Ramasse, L. P. Hansen, M. Brorson, A. Carlsson, A. M. Molenbroek, H. Topsøe, S. Helveg, Angew. Chem. Int. Ed., 122, 2768–2770 (2010).

17. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J. C. Idrobo, P. M. Ajayan, J. Lou, Nat. Mater., 12, 754–759 (2013).

18. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano, 4, 2695–2700 (2010).

19. J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, L.-J. Li, ACS Nano, 8, 923–930 (2014).

20. Y. Chen, J. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y.-S. Huang, L. Xie, ACS Nano, 7, 4610–4616 (2013).

21. A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H. S. J. van der Zant, G. A. Steele, Nano Lett., 13, 5361–5366 (2013).

22. H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, Jr., S. T. Pantelides, K. I. Bolotin, Nano Lett., 13, 3626–3630 (2013).

23. H. Pan, Y.-W. Zhang, J. Phys. Chem. C, 116, 11752–11757 (2012).

24. N. Mao, Y. Chen, D. Liu, J. Zhang, L. Xie, Small, 9, 1312–1315 (2013).

25. G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager III, M. Dubey, D. C. Chrzan, A. M. Minor, A. Javey, Nat. Commum., 8, 608 (2017).

26. C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, E. Pop, Nano Lett., 16, 3824–3830 (2016).

27. X. Ling, Y. Lin, Q. Ma, Z. Wang, Y. Song, L. Yu, S. Huang, W. Fang, X. Zhang, A. L. Hsu, et al., Adv. Mater., 28, 2322–2329 (2016).

28. K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu, J. Xiong, Q. Liu, et al., Nano Lett., 17, 1065–1070 (2017).

29. D. Jena, A. Konar, Phys. Rev. Lett., 98, 136805 (2007).

30. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol., 8, 497–501 (2013).

31. Z. Yin, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano, 6, 74–80 (2012).

32. R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, X. Duan, Nano Lett., 14, 5590–5597 (2014).

33. F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Nat. Photonics, 8, 899–907 (2014).

34. Y. Yoon, K. Ganapathi, S. Salahuddin, Nano Lett., 11, 3768–3773 (2011).

35. D. J. Late, B. Liu, R.H. S. S. Matte, V. P. Dravid, C. N. R. Rao, ACS Nano, 6, 5635–5641 (2012).

36. C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, et al., Nat. Nanotechnol., 9, 676–681 (2014).

37. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, et al., IEEE J. Photovolt., 4, 1433–1435 (2014).

38. P. Giannozzi, et al., J. Phys.: Cond. Matter, 21, 395502 (2009).

39. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

40. D. Vanderbilt, Phys. Rev. B, 41, 7892 (1990).

41. H. J. Monkhorst, J. D. Pack, Phys. Rev. B, 13, 5188 (1979).

42. J. P. Perdew, A. Ruzsinszky, G. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett., 100, 136406 (2008).


Review

For citations:


Alshammari A., Alshehri H., Barakat F., Laref A. Density Functional Theory Investigations of Optoelectronic Characteristics of MoS, MoSe, and MoSSe Monolayers. Zhurnal Prikladnoii Spektroskopii. 2024;91(3):458.

Views: 66


ISSN 0514-7506 (Print)