Up-Conversion Behaviour of Er3+/Yb3+ Activated Gd2O3 Phosphor for Magnetic Resonance Application
Abstract
We present new aspects of erbium or ytterbium doped pure gadolinium oxide (Gd2O3:Er3+/Yb3+) as a suitable candidate for drug delivery and magnetic resonance (MR) applications. The samples were prepared using the conventional sol–gel synthesis technique. The structural studies revealed that the prepared sample was monophased and crystallizes in a cubic structure. FTIR measurements confirmed the creation of Gd2O3:Er3+/Yb3+ phosphor. SEM micrographs clearly indicated that the particles crystallized in uniform shape, exhibiting nano-rod formation, with the particle size ranging from 55 to 5 nm. TEM images revealed that Er3+ and Yb3+ co-doped Gd2O3 nanoparticles were the collection of the nano-rods 2–4 nm thick and 18–20 nm long. Also, photoluminescence analysis of the phosphor samples for variable concentrations of doping ions was presented. When doped with Er3+/Yb3+, nano-rod Gd2O3 emits intense green emission and some red emission peaks, under a 980-nm near-infrared laser. Our study shows that as-prepared samples may be useful for optical imaging systems and that nano-rod formation may be used as a major host carrier for drug delivery.
About the Authors
P. K. YadawIndia
School of Engineering & Technology,
Gariyaband
J. Mitrić
Serbia
Belgrade
N. Romčević
Serbia
Belgrade
V. Dubey
India
Department of Physics,
Shillong, Meghalaya
N. K. Swamy
India
School of Engineering & Technology,
Gariyaband
M. C. Rao
India
Department of Physics,
Vijayawada
R. Koutavarapu
India
Physics Division, Department of Basic Sciences and Humanities,
Rajam, Andhra Pradesh
References
1. H. Liu, X. He, H. Jia, Y. Zheng, R. Bai, Y. Zhang, Optik, 228, 166155 (2021).
2. A. Urbina-Frías, T. López-Luke, J. Oliva, P. Salas, A. Torres-Castro, E. De la Rosa, J. Lumin., 172, 154–160 (2016).
3. J. Tang, Y. Huang, M. Sun, J. Gou, Y. Zhang, G. Li, Z. Xiao, J. Lumin., 197, 153–158 (2018).
4. P. Singh, P. K. Shahi, A. Rai, A. Bahadur, S. B. Rai, Opt. Mater., 58, 432–438 (2016).
5. A. Brenier, Chem. Phys. Lett., 290, No. 4-6, 329–334 (1998).
6. E. Kolobkova, A. Alkhlef, L.Y. Mironov, O. Bogdanov, Ceram. Int., 46, No. 16, 26396–26402 (2020).
7. G. Chen, R. Lei, H. Wang, F. Huang, S. Zhao, S. Xu, Opt. Mater., 77, 233–239 (2018).
8. J. Zhang, Z. Zhai, G. Chen, J. Alloys Compd., 610, 409–415 (2014).
9. L. Nystrom, L. E. Rutqvist, S. Wall et al., Lancet, 341, 973–978 (1993).
10. S. Winawer, R. Fletcher, D. Rex et al., Gastroenterol., 124, 544–560 (2003).
11. W. H. Gmeiner, S. Ghosh, Nanotechnol. Rev., 3, No. 2, 111–122 (2015).
12. C. Wang, L. Cheng, Z. Liu, Theranostics, 3, No. 5, 317–330 (2013).
13. F. Wang, W. B. Tan, Y. Zhang, X. Fan, M. Wang, Nanotechnol., 17, R1–R13 (2006).
14. E. Wakefield, P. Holland, J. Dobson, J. L. Hutchison, Adv. Mater., 13, 1557–1560 (2001).
15. Y. C. Kang, H. S. Roh, S. B. Park, Adv. Mater., 12, 451–477 (2000).
16. J. McKittrick, C. F. Bacalski, G. A. Hirata, K. M. Hubbard, S. G. Pattillo, K. V. Salazar, M. Trkula, J. Am. Ceram. Soc., 83, 1241–1250 (2000).
17. P. Maestro, D. Huguenin, A. Seigneurin, F. Deneuve, P. L. Lann, J. F. Berar, J. Electrochem. Soc., 139, 1472–1479 (1992).
18. B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, V. Shanker, Nanotechnol., 21, 055607 (2010).
19. S. Dutta, Q. Mohammad, S. S. Manoharan, J. Mater. Sci. Lett., 21, 1077–1085 (2002).
20. T. Ye, Z. Guiwen, Z. Weiping, X. Shangda, Mater. Res. Bull., 32, 501–511 (1997).
21. X. Li, Q. Li, Z. Xia, L. Wang, W. Yan, J. Wang, R. I. Boughton, Cryst. Growth Des., 6, 2193–2194 (2006).
22. A. P. Jadhav, A. Pawar, C. W. Kim, H. G. Cha, U. Pal, Y. S. Kang, J. Phys. Chem. C, 113, 16652 (2009).
23. Y. C. Kang, I. W. Lenggoro, S. B. Park, K. Okuyama, J. Solid State Chem., 146, 168–175 (1999).
24. A. M. Smith, X. Gao, S. Nie, Photochem. Photobiol., 80, 377–385 (2004).
25. T. Kushida, M. Tanaka, Phys. Rev. B, 65, 195118 (2002).
26. W. Feng, C. Han, F. Li, Adv. Mater., 25, 5287–5303 (2013).
27. K. Ravindranadh, B. Babu, C. V. Reddy, J. Shim, M. C. Rao, R. V. S. S. N. Ravikumar, Appl. Mag. Res., 46, No. 1, 1–15 (2015).
28. Sk. Muntaz Begum, G. Nirmala, K. Ravindranadh, T. Aswani, M. C. Rao, J. Mol. Struct., 1006, No. 1, 344–347 (2011).
29. V. Dubey, R. Tiwari, Raunak Kumar Tamrakar, Jagjeet Kaur, S. Dutta, Subrata Das, H. G. Visser, S. Som, J. Lumin., 180, 169–176 (2016).
30. T. N. Singh-Rachford, F. N. Castellano, Coord. Chem. Rev., 254, No. 21-22, 2560–2573 (2010).
31. D. H. Weingarten, Nat. Commun., 8, 1480 (2017).
32. G. Bilir, O. Erguzel, Mater. Res. Express, 3, No. 10, 106201 (2016).
33. Y. Zhang, H. Jia, X. He, Y. Zheng, R. Bai, H. Liu, J. Lumin., 236, 118111 (2021).
34. E. Hemmer, T. Yamano, H. Kishimoto, N. Venkatachalam, H. Hyodo, K. Soga, Acta Biomater., 9, No. 1, 4734–4743 (2013).
35. D. M. Bubb, D. Cohen, S. B. Qadri, Appl. Phys. Lett., 87, No. 13, 131909 (2005).
36. L. S. Wang, Y. H. Zhou, Z. W. Quan, J. Lin, Mater. Lett., 59, No. 10, 1130–1133 (2005).
37. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, S. Xia, J. Phys. Chem. B, 108, No. 50, 19205–19209 (2004).
Review
For citations:
Yadaw P.K., Mitrić J., Romčević N., Dubey V., Swamy N.K., Rao M.C., Koutavarapu R. Up-Conversion Behaviour of Er3+/Yb3+ Activated Gd2O3 Phosphor for Magnetic Resonance Application. Zhurnal Prikladnoii Spektroskopii. 2024;91(3):460.