

Quantum Chemical Calculation of the Electron Field Emission Threshold from the Short Boron-Nitride Nanotubes
Abstract
The electronic structure of cylindrical conjugated macromolecules of boron and nitrogen atoms modeling short open nanotubes of zigzag (n,0) and armchair (n,n) types is calculated by using the density functional theory with B3LYP hybrid functional in the 6-31G basis set. Their stability as a function of diameter and length is studied. It is shown that a constant electric field applied along the tubes leads to a “compression” of the energy gap in the electron energy spectrum of the nanotubes to ≈ 0.2 eV. In the framework of the emission molecular orbitals theory, the threshold of field electron emission from boron-nitride nanotubes is calculated. It is shown that, despite the isoelectronicity of conjugated systems of boron-nitride and carbon nanotubes, the substitution of carbon atoms in the nanotube framework for nitrogen and boron atoms leads to a decrease in the threshold field strength of the field emission. It is revealed that the diameter of boron-nitride nanotubes has virtually no effect on the emission molecular orbital.
Keywords
About the Authors
O. B. TomilinRussian Federation
Oleg Borisovich Tomilin
Saransk
E. V. Rodionova
Russian Federation
Evgeniya Valer'evna Rodionova
Saransk
E. A. Rodin
Russian Federation
Evgenii Anatol'evich Rodin
Saransk
N. A. Poklonski
Belarus
Nikolai Aleksandrovich Poklonski, professor
Faculty of Physics; Department of Semiconductor Physics
Minsk
A. V. Knyazev
Russian Federation
Aleksandr Vladimirovich Knyazev
Nizhny Novgorod
References
1. Z. Ya. Kosakovskaya, S. V. von Gratowski, V. V. Koledov, V. G. Shavrov, A. M. Smolovich, A. P. Orlov, J.-G. Liang. J. Radio Electronics, N 12 (2022) 1—13 doi: 10.30898/1684-1719.2022.12.9
2. N. Gupta, S. M. Gupta, S. K. Sharma. Carbon Lett., 29, N 5 (2019) 419—447, doi: 10.1007/s42823-019-00068-2
3. A. A. Talin, K. A. Dean, J. E. Jaskie. Solid State Electron., 45, N 6 (2001) 963—976, doi: 10.1016/S0038-1101(00)00279-3
4. X. Cao, C. Lau, Y. Liu, F. Wu, H. Gui, Q. Liu, Y. Ma, H. Wan, M. R. Amer, C. Zhou. ACS Nano, 10, N 11 (2016) 9816—9822, doi: 10.1021/acsnano.6b05368
5. L. Camilli, M. Passacantando. Chemosensors, 6, N 4 (2018) 62(1—17), doi: 10.3390/chemosensors6040062
6. M. N. Norizan, M. H. Moklis, S. Z. N. Demon, N. A. Halim, A. Samsuri, I. S. Mohamad, V. F. Knight, N. Abdullah. RSC Adv., 10, N 71 (2020) 43704—43732, doi: 10.1039/D0RA09438B
7. J. Chen, S. Z. Deng, N. S. Xu. Ultramicroscopy, 95, N 1-4 (2003) 81—84, doi: 10.1016/S0304-3991(02)00300-5
8. X. He, H. Htoon, S. K. Doorn, W. H. P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, C. Voisin. Nat. Mater., 17, N 8 (2018) 663—670, doi: 10.1038/s41563-018-0109-2
9. R. H. Fowler, L. Nordheim. Proc. Roy. Soc. Lond. Ser. A, 119, N 781 (1928) 173—181, doi: 10.1098/rspa.1928.0091
10. Z. Li, S. Deng, N. Xu. Front. Phys. China, 1, N 3 (2006) 305—316, doi: 10.1007/s11467-006-0029-5
11. Д. С. Быченок, Г. Я. Слепян. Вестн. БГУ, Сер. 1, No 3 (2012) 33—36, http://elib.bsu.by/handle/123456789/49212
12. P. G. Collins, A. Zettl. Phys. Rev. B, 55, N 15 (1997) 9391—9399, doi: 10.1103/ PhysRevB.55.9391
13. S. Dimitrijevic, J. C. Withers, V. P. Mammana, O. R. Monteiro, J. W. Ager III, I. G. Brown. Appl. Phys. Lett., 75, N 17 (1999) 2680—2682, doi: 10.1063/1.125122
14. X. Xu, G. R. Brandes. Appl. Phys. Lett., 74, N 17 (1999) 2549—2551, doi: 10.1063/1.123894
15. E. D. Eidelman, A. V. Arkhipov. Phys. Usp., 63, N 7 (2020) 648—667 doi: 10.3367/UFNe.2019.06.038576
16. R. Gao, Z. Pan, Z. L. Wang. Appl. Phys. Lett., 78, N 12 (2001) 1757—1759, doi: 10.1063/1.1356442
17. J.-M. Bonard, T. Stöckli, F. Maier, W.A. de Heer, A. Châtelain, J.-P. Salvetat, L. Forró. Phys. Rev. Lett., 81, N 7 (1998) 1441—1444, doi: 10.1103/PhysRevLett.81.1441
18. X. H. Yang, H. I. Ma, F. G. Zeng. Vacuum, 167 (2019) 113—117, doi: 10.1016/j.vacuum.2019.06.001
19. O. Gröning, O. M. Küttel, Ch. Emmenegger, P. Gröning, L. Schlapbach. J. Vac. Sci. Technol. B, 18, N 2 (2000) 665—678, doi: 10.1116/1.591258
20. Yu.G. Polynskaya, A. S. Sinitsa, S. A. Vyrko, O. Ori, A. M. Popov, A. A. Knizhnik, N. A. Poklonski, Yu. E. Lozovik. Physica E, 148 (2023) 115624 (1—7), doi: 10.1016/j.physe.2022.115624
21. D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. De Vita, R. Car. Phys. Rev. Lett., 78, N 14 (1997) 2811—2814, doi: 10.1103/PhysRevLett.78.2811
22. P. Kim, T. W. Odom, J.-L. Huang, C. M. Lieber. Phys. Rev. Lett., 82, N 6 (1999) 1225—1228, doi: 10.1103/PhysRevLett.82.1225
23. K. A. Dean, B. R. Chalamala. Appl. Phys. Lett., 76, N 3 (2000) 375—377, doi: 10.1063/1.125758
24. R. C. Smith, D. C. Cox, S. R. P. Silva. Appl. Phys. Lett., 87, N 10 (2005) 103112(1—3), doi: 10.1063/1.2041824
25. S. Han, J. Ihm. Phys. Rev. B, 66, N 24 (2002) 241402(1—4), doi: 10.1103/PhysRevB.66.241402
26. J. Peng, Z. Li, C. He, S. Deng, N. Xu, X. Zheng, G. Chen. Phys. Rev. B, 72, N 23 (2005) 235106(1—8), doi: 10.1103/PhysRevB.72.235106
27. O. B. Tomilin, E. V. Rodionova, E. A. Rodin. Russ. J. Phys. Chem. A, 94, N 8 (2020) 1657—1662 doi: 10.1134/S0036024420080269
28. O. B. Tomilin, E. V. Rodionova, E. A. Rodin, N. A. Poklonski, I. I. Anikeev, S. V. Ratkevich. Phys. Solid State, 64, N 3 (2022), 359—364 doi: 10.21883/PSS.2022.03.53191.201
29. O. B. Tomilin, I. V. Stankevich, E. E. Muryumin, E. V. Rodionova. Carbon, 50, N 14 (2012) 5217—5225, doi: 10.1016/j.carbon.2012.07.005
30. P. v. R. Schleyer, H. Jiao, M. N. Glukhovtsev, J. Chandrasekhar, E. Kraka. J. Am. Chem. Soc., 116, N 22 (1994) 10129—10134, doi: 10.1021/ja00101a035
31. Al. A. Zakhidov, R. Nanjundaswamy, M. Zhang, S. B. Lee, A. N. Obraztsov, A. Cunningham, A. A. Zakhidov. J. Appl. Phys., 100, N 4 (2006), doi: 10.1063/1.2335780
32. N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, L. Cognet. ACS Nano, 12, N 6 (2018) 6059—6065, doi: 10.1021/acsnano.8b02307
33. İ. Muz, M. Kurban. J. Alloys Compd., 802 (2019) 25—35, doi: 10.1016/j.jallcom.2019.06.210
34. J. H. Kim, T. V. Pham, J. H. Hwang, C. S. Kim, M. J. Kim. Nano Convergence, 5 (2018) 17(1—13), doi: 10.1186/s40580-018-0149-y
35. N. Kostoglou, C. Tampaxis, G. Charalambopoulou, G. Constantinides, V. Ryzhkov, C. Doumanidis, B. Matovic, C. Mitterer, C. Rebholz. Nanomaterials, 10, N 12 (2020) 2435(1—9), doi: 10.3390/nano10122435
36. K. N. Yun, Y. Sun, J. S. Han, Y.-H. Song, C. J. Lee. ACS Appl. Mater. Interfaces, 9, N 2 (2017) 1562—1568, doi: 10.1021/acsami.6b10713
37. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery Jr. J. Comp. Chem., 14, N 11 (1993) 1347—1363, doi: 10.1002/jcc.540141112
38. M. V. Kharlamova. Phys. Usp., 56, N 11 (2013) 1047—1073 doi: 10.1002/jcc.540141112
39. Y.-M. Chou, H.-W. Wang, Y.-J. Lin, W.-H. Chen, B.-C. Wang. Diamond Rel. Mater., 18, N 2 (2009) 351—354, doi: 10.1016/j.diamond.2008.10.026
40. A. S. Barnard, I. K. Snook, S. P. Russo. J. Mater. Chem., 17, N 28 (2007) 2892—2898, doi: 10.1039/b704037g
41. G. Cassabois, P. Valvin, B. Gil. Nat. Photon., 10, N 4 (2016) 262—266, doi: 10.1038/nphoton.2015.277
42. C. H. Lee, J. Wang, V. K. Kayatsha, J. Y. Huang, Y. K. Yap. Nanotechnology, 19, N 45 (2008) 455605(1—5), doi: 10.1088/0957-4484/19/45/455605
43. P. Jaffrennou, J. Barjon, J.-S. Lauret, A. Maguer, D. Golberg, B. Attal-Trétout, F. Ducastelle, A. Loiseau. Phys. Status Solidi B, 244, N 11 (2007) 4147—4151, doi: 10.1002/pssb.200776109
44. M. Ishigami, J. D. Sau, S. Aloni, M. L. Cohen, A. Zettl. Phys. Rev. Lett., 94, N 5 (2005) 056804(1—4), doi: 10.1103/PhysRevLett.94.056804
45. F. Zheng, G. Zhou, S. Hao, W. Duan. J. Chem. Phys., 123, N 12 (2005) 124716(1—5), doi: 10.1063/1.2035097
46. N. A. Poklonski, S. V. Ratkevich, S. A. Vyrko, E. F. Kislyakov, O. N. Bubel’, A. M. Popov, Yu. E. Lozovik, N. N. Hieu, N. A. Viet. Chem. Phys. Lett., 545 (2012) 71—77, doi: 10.1016/j.cplett.2012.07.023
47. О. Б. Томилин, Е. В. Родионова, Е. А. Родин. ЖФХ, 95, № 9 (2021) 1396—1398, doi: 10.31857/S0044453721090296 [O. B. Tomilin, E. V. Rodionova, E. A. Rodin. Russ. J. Phys. Chem. A, 95, N 9 (2021) 1883—1885, doi: 10.1134/S0036024421090296 ]
48. A. Mañanes, F. Duque, A. Ayuela, M. J. López, J. A. Alonso. Phys. Rev. B, 78, N 3 (2008) 035432(1—10), doi: 10.1103/PhysRevB.78.035432
Supplementary files
Review
For citations:
Tomilin O.B., Rodionova E.V., Rodin E.A., Poklonski N.A., Knyazev A.V. Quantum Chemical Calculation of the Electron Field Emission Threshold from the Short Boron-Nitride Nanotubes. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):699-708. (In Russ.)