Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Quantum Chemical Calculation of the Electron Field Emission Threshold from the Short Boron-Nitride Nanotubes

Abstract

   The electronic structure of cylindrical conjugated macromolecules of boron and nitrogen atoms modeling short open nanotubes of zigzag (n,0) and armchair (n,n) types is calculated by using the density functional theory with B3LYP hybrid functional in the 6-31G basis set. Their stability as a function of diameter and length is studied. It is shown that a constant electric field applied along the tubes leads to a “compression” of the energy gap in the electron energy spectrum of the nanotubes to ≈ 0.2 eV. In the framework of the emission molecular orbitals theory, the threshold of field electron emission from boron-nitride nanotubes is calculated. It is shown that, despite the isoelectronicity of conjugated systems of boron-nitride and carbon nanotubes, the substitution of carbon atoms in the nanotube framework for nitrogen and boron atoms leads to a decrease in the threshold field strength of the field emission. It is revealed that the diameter of boron-nitride nanotubes has virtually no effect on the emission molecular orbital.

About the Authors

O. B. Tomilin
Mordovia State University
Russian Federation

Oleg Borisovich Tomilin

Saransk



E. V. Rodionova
Mordovia State University
Russian Federation

Evgeniya Valer'evna Rodionova

Saransk



E. A. Rodin
Mordovia State University
Russian Federation

Evgenii Anatol'evich Rodin

Saransk



N. A. Poklonski
Belarusian State University
Belarus

Nikolai Aleksandrovich Poklonski, professor

Faculty of Physics; Department of Semiconductor Physics

Minsk



A. V. Knyazev
Lobachevsky State University
Russian Federation

Aleksandr Vladimirovich Knyazev

Nizhny Novgorod



References

1. Z. Ya. Kosakovskaya, S. V. von Gratowski, V. V. Koledov, V. G. Shavrov, A. M. Smolovich, A. P. Orlov, J.-G. Liang. J. Radio Electronics, N 12 (2022) 1—13 doi: 10.30898/1684-1719.2022.12.9

2. N. Gupta, S. M. Gupta, S. K. Sharma. Carbon Lett., 29, N 5 (2019) 419—447, doi: 10.1007/s42823-019-00068-2

3. A. A. Talin, K. A. Dean, J. E. Jaskie. Solid State Electron., 45, N 6 (2001) 963—976, doi: 10.1016/S0038-1101(00)00279-3

4. X. Cao, C. Lau, Y. Liu, F. Wu, H. Gui, Q. Liu, Y. Ma, H. Wan, M. R. Amer, C. Zhou. ACS Nano, 10, N 11 (2016) 9816—9822, doi: 10.1021/acsnano.6b05368

5. L. Camilli, M. Passacantando. Chemosensors, 6, N 4 (2018) 62(1—17), doi: 10.3390/chemosensors6040062

6. M. N. Norizan, M. H. Moklis, S. Z. N. Demon, N. A. Halim, A. Samsuri, I. S. Mohamad, V. F. Knight, N. Abdullah. RSC Adv., 10, N 71 (2020) 43704—43732, doi: 10.1039/D0RA09438B

7. J. Chen, S. Z. Deng, N. S. Xu. Ultramicroscopy, 95, N 1-4 (2003) 81—84, doi: 10.1016/S0304-3991(02)00300-5

8. X. He, H. Htoon, S. K. Doorn, W. H. P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, C. Voisin. Nat. Mater., 17, N 8 (2018) 663—670, doi: 10.1038/s41563-018-0109-2

9. R. H. Fowler, L. Nordheim. Proc. Roy. Soc. Lond. Ser. A, 119, N 781 (1928) 173—181, doi: 10.1098/rspa.1928.0091

10. Z. Li, S. Deng, N. Xu. Front. Phys. China, 1, N 3 (2006) 305—316, doi: 10.1007/s11467-006-0029-5

11. Д. С. Быченок, Г. Я. Слепян. Вестн. БГУ, Сер. 1, No 3 (2012) 33—36, http://elib.bsu.by/handle/123456789/49212

12. P. G. Collins, A. Zettl. Phys. Rev. B, 55, N 15 (1997) 9391—9399, doi: 10.1103/ PhysRevB.55.9391

13. S. Dimitrijevic, J. C. Withers, V. P. Mammana, O. R. Monteiro, J. W. Ager III, I. G. Brown. Appl. Phys. Lett., 75, N 17 (1999) 2680—2682, doi: 10.1063/1.125122

14. X. Xu, G. R. Brandes. Appl. Phys. Lett., 74, N 17 (1999) 2549—2551, doi: 10.1063/1.123894

15. E. D. Eidelman, A. V. Arkhipov. Phys. Usp., 63, N 7 (2020) 648—667 doi: 10.3367/UFNe.2019.06.038576

16. R. Gao, Z. Pan, Z. L. Wang. Appl. Phys. Lett., 78, N 12 (2001) 1757—1759, doi: 10.1063/1.1356442

17. J.-M. Bonard, T. Stöckli, F. Maier, W.A. de Heer, A. Châtelain, J.-P. Salvetat, L. Forró. Phys. Rev. Lett., 81, N 7 (1998) 1441—1444, doi: 10.1103/PhysRevLett.81.1441

18. X. H. Yang, H. I. Ma, F. G. Zeng. Vacuum, 167 (2019) 113—117, doi: 10.1016/j.vacuum.2019.06.001

19. O. Gröning, O. M. Küttel, Ch. Emmenegger, P. Gröning, L. Schlapbach. J. Vac. Sci. Technol. B, 18, N 2 (2000) 665—678, doi: 10.1116/1.591258

20. Yu.G. Polynskaya, A. S. Sinitsa, S. A. Vyrko, O. Ori, A. M. Popov, A. A. Knizhnik, N. A. Poklonski, Yu. E. Lozovik. Physica E, 148 (2023) 115624 (1—7), doi: 10.1016/j.physe.2022.115624

21. D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. De Vita, R. Car. Phys. Rev. Lett., 78, N 14 (1997) 2811—2814, doi: 10.1103/PhysRevLett.78.2811

22. P. Kim, T. W. Odom, J.-L. Huang, C. M. Lieber. Phys. Rev. Lett., 82, N 6 (1999) 1225—1228, doi: 10.1103/PhysRevLett.82.1225

23. K. A. Dean, B. R. Chalamala. Appl. Phys. Lett., 76, N 3 (2000) 375—377, doi: 10.1063/1.125758

24. R. C. Smith, D. C. Cox, S. R. P. Silva. Appl. Phys. Lett., 87, N 10 (2005) 103112(1—3), doi: 10.1063/1.2041824

25. S. Han, J. Ihm. Phys. Rev. B, 66, N 24 (2002) 241402(1—4), doi: 10.1103/PhysRevB.66.241402

26. J. Peng, Z. Li, C. He, S. Deng, N. Xu, X. Zheng, G. Chen. Phys. Rev. B, 72, N 23 (2005) 235106(1—8), doi: 10.1103/PhysRevB.72.235106

27. O. B. Tomilin, E. V. Rodionova, E. A. Rodin. Russ. J. Phys. Chem. A, 94, N 8 (2020) 1657—1662 doi: 10.1134/S0036024420080269

28. O. B. Tomilin, E. V. Rodionova, E. A. Rodin, N. A. Poklonski, I. I. Anikeev, S. V. Ratkevich. Phys. Solid State, 64, N 3 (2022), 359—364 doi: 10.21883/PSS.2022.03.53191.201

29. O. B. Tomilin, I. V. Stankevich, E. E. Muryumin, E. V. Rodionova. Carbon, 50, N 14 (2012) 5217—5225, doi: 10.1016/j.carbon.2012.07.005

30. P. v. R. Schleyer, H. Jiao, M. N. Glukhovtsev, J. Chandrasekhar, E. Kraka. J. Am. Chem. Soc., 116, N 22 (1994) 10129—10134, doi: 10.1021/ja00101a035

31. Al. A. Zakhidov, R. Nanjundaswamy, M. Zhang, S. B. Lee, A. N. Obraztsov, A. Cunningham, A. A. Zakhidov. J. Appl. Phys., 100, N 4 (2006), doi: 10.1063/1.2335780

32. N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, L. Cognet. ACS Nano, 12, N 6 (2018) 6059—6065, doi: 10.1021/acsnano.8b02307

33. İ. Muz, M. Kurban. J. Alloys Compd., 802 (2019) 25—35, doi: 10.1016/j.jallcom.2019.06.210

34. J. H. Kim, T. V. Pham, J. H. Hwang, C. S. Kim, M. J. Kim. Nano Convergence, 5 (2018) 17(1—13), doi: 10.1186/s40580-018-0149-y

35. N. Kostoglou, C. Tampaxis, G. Charalambopoulou, G. Constantinides, V. Ryzhkov, C. Doumanidis, B. Matovic, C. Mitterer, C. Rebholz. Nanomaterials, 10, N 12 (2020) 2435(1—9), doi: 10.3390/nano10122435

36. K. N. Yun, Y. Sun, J. S. Han, Y.-H. Song, C. J. Lee. ACS Appl. Mater. Interfaces, 9, N 2 (2017) 1562—1568, doi: 10.1021/acsami.6b10713

37. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery Jr. J. Comp. Chem., 14, N 11 (1993) 1347—1363, doi: 10.1002/jcc.540141112

38. M. V. Kharlamova. Phys. Usp., 56, N 11 (2013) 1047—1073 doi: 10.1002/jcc.540141112

39. Y.-M. Chou, H.-W. Wang, Y.-J. Lin, W.-H. Chen, B.-C. Wang. Diamond Rel. Mater., 18, N 2 (2009) 351—354, doi: 10.1016/j.diamond.2008.10.026

40. A. S. Barnard, I. K. Snook, S. P. Russo. J. Mater. Chem., 17, N 28 (2007) 2892—2898, doi: 10.1039/b704037g

41. G. Cassabois, P. Valvin, B. Gil. Nat. Photon., 10, N 4 (2016) 262—266, doi: 10.1038/nphoton.2015.277

42. C. H. Lee, J. Wang, V. K. Kayatsha, J. Y. Huang, Y. K. Yap. Nanotechnology, 19, N 45 (2008) 455605(1—5), doi: 10.1088/0957-4484/19/45/455605

43. P. Jaffrennou, J. Barjon, J.-S. Lauret, A. Maguer, D. Golberg, B. Attal-Trétout, F. Ducastelle, A. Loiseau. Phys. Status Solidi B, 244, N 11 (2007) 4147—4151, doi: 10.1002/pssb.200776109

44. M. Ishigami, J. D. Sau, S. Aloni, M. L. Cohen, A. Zettl. Phys. Rev. Lett., 94, N 5 (2005) 056804(1—4), doi: 10.1103/PhysRevLett.94.056804

45. F. Zheng, G. Zhou, S. Hao, W. Duan. J. Chem. Phys., 123, N 12 (2005) 124716(1—5), doi: 10.1063/1.2035097

46. N. A. Poklonski, S. V. Ratkevich, S. A. Vyrko, E. F. Kislyakov, O. N. Bubel’, A. M. Popov, Yu. E. Lozovik, N. N. Hieu, N. A. Viet. Chem. Phys. Lett., 545 (2012) 71—77, doi: 10.1016/j.cplett.2012.07.023

47. О. Б. Томилин, Е. В. Родионова, Е. А. Родин. ЖФХ, 95, № 9 (2021) 1396—1398, doi: 10.31857/S0044453721090296 [O. B. Tomilin, E. V. Rodionova, E. A. Rodin. Russ. J. Phys. Chem. A, 95, N 9 (2021) 1883—1885, doi: 10.1134/S0036024421090296 ]

48. A. Mañanes, F. Duque, A. Ayuela, M. J. López, J. A. Alonso. Phys. Rev. B, 78, N 3 (2008) 035432(1—10), doi: 10.1103/PhysRevB.78.035432


Supplementary files

Review

For citations:


Tomilin O.B., Rodionova E.V., Rodin E.A., Poklonski N.A., Knyazev A.V. Quantum Chemical Calculation of the Electron Field Emission Threshold from the Short Boron-Nitride Nanotubes. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):699-708. (In Russ.)

Views: 119


ISSN 0514-7506 (Print)