Control of the T1→S0 Transition Energy in Porphine Derivatives Substituted by NH2-Groups
Abstract
The influence of the architecture of NH2-peripheral substitution of porphin derivatives on the energy of the intersystem T1→S0 transition was studied theoretically. Using quantum chemistry methods, the molecular conformation of 15 porphine and 8 Zn-porphine derivatives in the ground singlet S0 and lowest triplet T1 states was optimized, the energies of molecular orbitals were determined, and the energies of the T1→S0 transition were calculated. It has been established that the energy of T1→S0 transition decreases from 11700 down to 6200 сm–1 with an increase in the number of NH2-groups in Cm-positions of the macrocycle, with the energy of the T1→S0 transition being a linear function of the weighted sum of the inductive and resonant Hammett constants 0.2σI + 0.8σR of substituents. The ratio of the inductive and resonant contributions of the NH2-group depends on the attachment to the macrocycle, with the contribution of resonant interactions decreasing with increasing the spacer length. It has been shown that the main reason for the bathochromic shift of T1→S0 transition is a significant increase in the energy of b1-orbital, which has antinodes on Cm atoms of the macrocycle. The dependence is kept also for Zn-porphyrins with the same architecture of peripheral substitution. It has been noticed that the energy of T1→S0 transition differs both for NH-tautomers and for conformers that differ in the position of NH2-groups relative to the macrocycle mean plane. The calculation results show the promise of experimental studies of aminoporphyrins for obtaining new phosphors in the IR spectral region. Based on the results obtained, the method has been proposed to predict the energy of T1→S0 transition for the synthesis of compounds with the required spectral-luminescent characteristics.
About the Authors
L. L. GladkovBelarus
Minsk
M. M. Kruk
Belarus
Minsk
References
1. С. Г. Пуховская, Ю. Б. Иванова, Н. Н. Крук, О. А. Голубчиков, О. И. Койфман. В кн. “Функциональные материалы на основе тетрапиррольных макрогетероциклических соединений”, под ред. О. И. Койфмана, Москва, ЛЕНАНД (2019) 63—101
2. L. A. Yakubov, N. E. Galanin, G. P. Shaposhnikov. Macroheterocycles, 4 (2011) 111—115
3. C. Wang, C. C. Wamser. J. Phys. Chem. A, 118 (2014) 3605—3615
4. A. Liubimtsev, A. Semeikon, N. Zheglova, V. Sheinin, O. Kulikova, S. Syrbu. Macroheterocycles, 11 (2018) 103—110
5. J. Conradie, C. C. Wamser, A. Ghosh. J. Phys. Chem. A, 125 (2021) 9953—9961
6. C. C. Wamser, A. Ghosh. J. Am. Chem. Soc., 2 (2022) 1543—1560
7. В. В. Синявский, Ю. Б. Иванова, С. Г. Пуховская, Е. Н. Угарова, Н. Н. Крук. Тр. БГТУ. Сер. 3, Физ.-мат. науки и информ., 218 (2019) 27—33
8. K. Hansch, A. Leo, R. W. Taft. Chem. Rev., 91 (1991) 165—195
9. Б. М. Джагаров, Е. И. Сагун. Журн. прикл. спектр., 37 (1974) 254—258
10. Н. Н. Крук. Строение и оптические свойства тетрапиррольных соединений, Минск, БГТУ (2019)
11. Е. И. Сагун, Э. И. Зенькевич, В. Н. Кнюкшто, А. Ю. Панарин, А. С. Семейкин, Т. В. Любимова. Опт. и спектр., 115 (2012) 1—14
12. D. N. Laikov. Chem. Phys. Lett., 281 (1997) 151—156
13. D. N. Laikov, Yu. A. Ustynyuk. Russ. Chem. Bull., 54 (2005) 820—826
14. M. O. Senge, S. A. MacGowan, J. O’Brien. Chem. Comm (Camb.), 51 (2015) 17031—17063
15. В. А. Кузьмицкий, Л. Л. Гладков, Д. И. Волкович, К. Н. Соловьев. Журн. прикл. спектр., 88 (2021) 345—350 [V. A. Kuzmitky, L. L. Gladkov, D. I. Volkovich, K. N. Solovyov. J. Appl. Spectr., 88 (2021) 469—473]
16. S. M. Arabei, P. P. Pershukevich, M. V. Belkov, L. L. Gladkov, A. A. Tabolich, K. N. Solovyov, I. A. Skvortsov, P. A. Stuzhin. Spectrochim. Acta A: Mol. and Biomol. Spectr., 302 (2023) 123052
17. M. Meot-Ner, A. D. Adler. J. Am. Chem. Soc., 97 (1975) 5107—5111
18. M. Gouterman. In: The Porphyrins, 3, Ed. D. Dolphin, New York (1978) 1—165
19. S. Yamauchi, Y. Masukawa, Y. Ohba, M. Iwaizumi. Inorg. Chem., 35 (1996) 2910—2914
20. К. Н. Соловьев, Е. А. Борисевич. Успехи физ. наук, 175 (2005) 247—270
21. Н. Н. Крук. Журн. прикл. спектр., 73 (2006) 613—619 [N. N. Kruk. J. Appl. Spectr., 73 (2006) 686—693]
Review
For citations:
Gladkov L.L., Kruk M.M. Control of the T1→S0 Transition Energy in Porphine Derivatives Substituted by NH2-Groups. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):483-490. (In Russ.)