Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Analysis of Spatial Photon Counting Distributions in Fluorescence Fluctuation Spectroscopy

Abstract

The proposed method for analyzing photon counting distributions (PCD), calculated over the space (pixels) of a stack of fluorescent images obtained in the process of scanning measurement in fluorescence fluctuation spectroscopy, makes it possible to determine the characteristic brightness and number of molecules of the investigated substance. The method is valid for ergodic systems and is based on the theory of analysis of photon count histograms PCH (Photon Counting Histogram), developed for the analysis of single-point measurements. The method has been tested on the experimentally obtained images of green fluorescent protein. The results are compared with the results of a single-point experiment and the N&B (Number and Brightness) method, which is most often used for numerical analysis of a stack of fluorescent images obtained in scanning experiments. The resulting estimates of the characteristic brightness and number of molecules of the calculated substance are in good agreement with the estimates obtained using analysis methods in this area, which allows us to conclude that it is possible to use the theory of the PCH method for the analysis of spatial PCD calculated based on a stack of images. The developed method makes it possible to obtain estimates of the observed parameters based on a selected subregion of one image frame.

About the Authors

V. V. Skakun
Belarusian State University
Belarus

Minsk



M. A. Hink
University of Amsterdam, dept Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy
Netherlands

Amsterdam



V. V. Apanasovich
Belarusian State University
Belarus

Minsk



References

1. D. Magde, E. Elson, W. W. Webb. Phys. Rev. Lett., 29 , N 11 (1972) 705—708, doi: 10.1103/PhysRevLett.29.705

2. E. L. Elson. Biophys. J., 101 , N 12 (2011) 2855—2870, doi: 10.1016/j.bpj.2011.11.012

3. M. A. Hink. Protoplasma, 251 , N 2 (2014) 307—316, doi: 10.1007/S00709-013-0602-Z

4. R. Rigler, U. Mets, J. Widengren, P. Kask. Eur. Biophys. J., 22 , N 3 (1993) 169—175, doi: 10.1007/BF00185777

5. S. T. Hess, W. W. Webb. Biophys. J., 83 , N 4 (2002) 2300—2317, doi: 10.1016/S0006-3495(02)73990-8

6. E. L. Elson, D. Magde. Biopolymers, 13 , N 1 (1974) 1—27, doi: 10.1002/BIP.1974.360130102

7. Y. Chen, J. D. Müller, P. T. C. So, E. Gratton. Biophys. J., 77 , N 1 (1999) 553—567, doi: 10.1016/S0006-3495(99)76912-2

8. P. Kask, K. Palo, D. Ullmann, K. Gall. Proc. Natl. Acad. Sci. USA, 96 , N 24 (1999) 13756—13761, doi: 10.1073/PNAS.96.24.13756

9. В. В. Скакун, В. В. Апанасович. Вестн. Бел. гос. ун-та. Сер. 1, Физика. Математика. Информатика, 2 (2008) 31—35

10. В. В. Скакун, В. В. Апанасович. Вестн. Бел. гос. ун-та. Сер. 1, Физика. Математика. Информатика, 2 (2016) 52—59

11. Lan Yu, Yunze Lei, Ying Ma, Min Liu, Juanjuan Zheng, Dan Dan, Peng Gao. Front Phys., 9 (2021) 110, doi: 10.3389/FPHY.2021.644450/BIBTEX

12. A. Kitamura, M. Kinjo. Int. J. Mol. Sci., 19 , N 4 (2018) 964, doi: 10.3390/IJMS19040964

13. L. M. Nederveen-Schippers, P. Pathak, I. Keizer-Gunnink, A. H. Westphal, P. J. M. van Haastert, J. W. Borst, A. Kortholt, V. V. Skakun. Int. J. Mol. Sci., 22 , N 14 (2021) 7300, doi: 10.3390/IJMS22147300

14. K. Palo, Ü. Mets, S. Jäger, P. Kask, K. Gall. Biophys. J., 79 , N 6 (2000) 2858—2866, doi: 10.1016/S0006-3495(00)76523-4

15. B. Huang, T. D. Perroud, R. N. Zare. Chem. Phys. Chem., 5 , N 10 (2004) 1523—1531, doi: 10.1002/CPHC.200400176

16. J. D. Müller. Biophys. J., 86 , N 6 (2004) 3981—3992, doi: 10.1529/biophysj.103.037887

17. B. Wu, R. H. Singer, J. D. Mueller. Methods Enzymol., 518 (2013) 99—119, doi: 10.1016/B978-0-12-388422-0.00005-4

18. V. V. Skakun, A. V. Digris, V. V. Apanasovich. Methods Mol. Biol., 1076 (2014) 719—741, doi: 10.1007/978-1-62703-649-8_33

19. J. M. Beechem. Methods Enzymol., 210 , N C (1992) 37—54, doi: 10.1016/0076-6879(92)10004-W

20. V. V. Skakun, M. A. Hink, A. V. Digris, R. Engel, E. G. Novikov, V. V. Apanasovich, A. J. W. G. Visser. Eur. Biophys. J., 34 , N 4 (2005) 323—334, doi: 10.1007/s00249-004-0453-9

21. M. A. Digman, R. Dalal, A. F. Horwitz, E. Gratton. Biophys J., 94 , N 6 (2008) 2320—2332, doi: 10.1529/BIOPHYSJ.107.114645

22. J. R. Unruh, E. Gratton. Biophys. J., 95 , N 11 (2008) 5385—5398, doi: 10.1529/BIOPHYSJ.108.130310

23. H. Balasubramanian, J. Sankaran, S. Pandey, C. J. H. Goh, T. Wohland. Biophys. J., 121 , N 23 (2022) 4452—4466, doi: 10.1016/j.bpj.2022.11.003

24. V. V. Skakun, E. G. Novikov, V. V. Apanasovich, H. J. Tanke, A. M. Deelder, O. A. Mayboroda. Eur. Biophys. J., 35 , N 5 (2006) 410—423, doi: 10.1007/s00249-006-0048-8

25. V. V. Skakun, E. G. Novikov, T. V. Apanasovich, V. V. Apanasovich. Methods Appl. Fluoresc., 3 , N 4 (2015) 045003, doi: 10.1088/2050-6120/3/4/045003

26. G. J. Kremers, J. Goedhart, D. J. Van Den Heuvel, H. C. Gerritsen, T. W. J. Gadella. Biochemistry, 46 , N 12 (2007) 3775—3783, doi: 10.1021/BI0622874

27. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York (2006), doi: 10.1007/978-0-387-46312-4

28. В. В. Скакун, В. В. Апанасович. Журн. БГУ. Физика, 2 (2023) 22—38, doi: 10.33581/2520-2243-2023-2-22-38

29. M. L. Johnson, L. M. Faunt. Methods Enzymol., 210 (1992) 1—37, doi: 10.1016/0076-6879(92)10003-V

30. T. D. Perroud, B. Huang, R. N. Zare. Chem. Phys. Chem., 6 , N 5 (2005) 905—912, doi: 10.1002/cphc.200400547

31. P. R. Bevington, D. K. Robinson. Data Reduction and Error Analysis for the Physical Sciences, 3rd ed., McGraw-Hill Publishing Co. (2003), ISBN 0072472278/9780072472271


Review

For citations:


Skakun V.V., Hink M.A., Apanasovich V.V. Analysis of Spatial Photon Counting Distributions in Fluorescence Fluctuation Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):571-580. (In Russ.)

Views: 176


ISSN 0514-7506 (Print)