Analysis of Spatial Photon Counting Distributions in Fluorescence Fluctuation Spectroscopy
Abstract
The proposed method for analyzing photon counting distributions (PCD), calculated over the space (pixels) of a stack of fluorescent images obtained in the process of scanning measurement in fluorescence fluctuation spectroscopy, makes it possible to determine the characteristic brightness and number of molecules of the investigated substance. The method is valid for ergodic systems and is based on the theory of analysis of photon count histograms PCH (Photon Counting Histogram), developed for the analysis of single-point measurements. The method has been tested on the experimentally obtained images of green fluorescent protein. The results are compared with the results of a single-point experiment and the N&B (Number and Brightness) method, which is most often used for numerical analysis of a stack of fluorescent images obtained in scanning experiments. The resulting estimates of the characteristic brightness and number of molecules of the calculated substance are in good agreement with the estimates obtained using analysis methods in this area, which allows us to conclude that it is possible to use the theory of the PCH method for the analysis of spatial PCD calculated based on a stack of images. The developed method makes it possible to obtain estimates of the observed parameters based on a selected subregion of one image frame.
About the Authors
V. V. SkakunBelarus
Minsk
M. A. Hink
Netherlands
Amsterdam
V. V. Apanasovich
Belarus
Minsk
References
1. D. Magde, E. Elson, W. W. Webb. Phys. Rev. Lett., 29 , N 11 (1972) 705—708, doi: 10.1103/PhysRevLett.29.705
2. E. L. Elson. Biophys. J., 101 , N 12 (2011) 2855—2870, doi: 10.1016/j.bpj.2011.11.012
3. M. A. Hink. Protoplasma, 251 , N 2 (2014) 307—316, doi: 10.1007/S00709-013-0602-Z
4. R. Rigler, U. Mets, J. Widengren, P. Kask. Eur. Biophys. J., 22 , N 3 (1993) 169—175, doi: 10.1007/BF00185777
5. S. T. Hess, W. W. Webb. Biophys. J., 83 , N 4 (2002) 2300—2317, doi: 10.1016/S0006-3495(02)73990-8
6. E. L. Elson, D. Magde. Biopolymers, 13 , N 1 (1974) 1—27, doi: 10.1002/BIP.1974.360130102
7. Y. Chen, J. D. Müller, P. T. C. So, E. Gratton. Biophys. J., 77 , N 1 (1999) 553—567, doi: 10.1016/S0006-3495(99)76912-2
8. P. Kask, K. Palo, D. Ullmann, K. Gall. Proc. Natl. Acad. Sci. USA, 96 , N 24 (1999) 13756—13761, doi: 10.1073/PNAS.96.24.13756
9. В. В. Скакун, В. В. Апанасович. Вестн. Бел. гос. ун-та. Сер. 1, Физика. Математика. Информатика, 2 (2008) 31—35
10. В. В. Скакун, В. В. Апанасович. Вестн. Бел. гос. ун-та. Сер. 1, Физика. Математика. Информатика, 2 (2016) 52—59
11. Lan Yu, Yunze Lei, Ying Ma, Min Liu, Juanjuan Zheng, Dan Dan, Peng Gao. Front Phys., 9 (2021) 110, doi: 10.3389/FPHY.2021.644450/BIBTEX
12. A. Kitamura, M. Kinjo. Int. J. Mol. Sci., 19 , N 4 (2018) 964, doi: 10.3390/IJMS19040964
13. L. M. Nederveen-Schippers, P. Pathak, I. Keizer-Gunnink, A. H. Westphal, P. J. M. van Haastert, J. W. Borst, A. Kortholt, V. V. Skakun. Int. J. Mol. Sci., 22 , N 14 (2021) 7300, doi: 10.3390/IJMS22147300
14. K. Palo, Ü. Mets, S. Jäger, P. Kask, K. Gall. Biophys. J., 79 , N 6 (2000) 2858—2866, doi: 10.1016/S0006-3495(00)76523-4
15. B. Huang, T. D. Perroud, R. N. Zare. Chem. Phys. Chem., 5 , N 10 (2004) 1523—1531, doi: 10.1002/CPHC.200400176
16. J. D. Müller. Biophys. J., 86 , N 6 (2004) 3981—3992, doi: 10.1529/biophysj.103.037887
17. B. Wu, R. H. Singer, J. D. Mueller. Methods Enzymol., 518 (2013) 99—119, doi: 10.1016/B978-0-12-388422-0.00005-4
18. V. V. Skakun, A. V. Digris, V. V. Apanasovich. Methods Mol. Biol., 1076 (2014) 719—741, doi: 10.1007/978-1-62703-649-8_33
19. J. M. Beechem. Methods Enzymol., 210 , N C (1992) 37—54, doi: 10.1016/0076-6879(92)10004-W
20. V. V. Skakun, M. A. Hink, A. V. Digris, R. Engel, E. G. Novikov, V. V. Apanasovich, A. J. W. G. Visser. Eur. Biophys. J., 34 , N 4 (2005) 323—334, doi: 10.1007/s00249-004-0453-9
21. M. A. Digman, R. Dalal, A. F. Horwitz, E. Gratton. Biophys J., 94 , N 6 (2008) 2320—2332, doi: 10.1529/BIOPHYSJ.107.114645
22. J. R. Unruh, E. Gratton. Biophys. J., 95 , N 11 (2008) 5385—5398, doi: 10.1529/BIOPHYSJ.108.130310
23. H. Balasubramanian, J. Sankaran, S. Pandey, C. J. H. Goh, T. Wohland. Biophys. J., 121 , N 23 (2022) 4452—4466, doi: 10.1016/j.bpj.2022.11.003
24. V. V. Skakun, E. G. Novikov, V. V. Apanasovich, H. J. Tanke, A. M. Deelder, O. A. Mayboroda. Eur. Biophys. J., 35 , N 5 (2006) 410—423, doi: 10.1007/s00249-006-0048-8
25. V. V. Skakun, E. G. Novikov, T. V. Apanasovich, V. V. Apanasovich. Methods Appl. Fluoresc., 3 , N 4 (2015) 045003, doi: 10.1088/2050-6120/3/4/045003
26. G. J. Kremers, J. Goedhart, D. J. Van Den Heuvel, H. C. Gerritsen, T. W. J. Gadella. Biochemistry, 46 , N 12 (2007) 3775—3783, doi: 10.1021/BI0622874
27. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York (2006), doi: 10.1007/978-0-387-46312-4
28. В. В. Скакун, В. В. Апанасович. Журн. БГУ. Физика, 2 (2023) 22—38, doi: 10.33581/2520-2243-2023-2-22-38
29. M. L. Johnson, L. M. Faunt. Methods Enzymol., 210 (1992) 1—37, doi: 10.1016/0076-6879(92)10003-V
30. T. D. Perroud, B. Huang, R. N. Zare. Chem. Phys. Chem., 6 , N 5 (2005) 905—912, doi: 10.1002/cphc.200400547
31. P. R. Bevington, D. K. Robinson. Data Reduction and Error Analysis for the Physical Sciences, 3rd ed., McGraw-Hill Publishing Co. (2003), ISBN 0072472278/9780072472271
Review
For citations:
Skakun V.V., Hink M.A., Apanasovich V.V. Analysis of Spatial Photon Counting Distributions in Fluorescence Fluctuation Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):571-580. (In Russ.)