Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectroscopic and Thermal Study of the Cyanide-Bridged Heteronuclear Compounds [Cd(NH3)(μ-3-Aminomethylpyridine)M(μ-CN) 4]n (M: Pd(II) or Pt(II))

Abstract

New cyanide-bridged heteronuclear compounds, [Cd(NH3)(μ-ampy)M(μ-CN)4]n [ampy = 3-aminomethylpyridine, M: Pd(II) or Pt(II) (hereafter abbreviated as Cd-M-ampy)] have been prepared in powder form and investigated by utilizing elemental analysis, vibrational (FT-IR and Raman) spectroscopy, and thermal analysis. In our previous work, we synthesized the [Cd(NH3)(μ-ampy)Ni(μ-CN)4]n compound and determined its crystal structure. The results of thermal analysis and vibrational spectroscopic show that the structural characteristics of Cd-Ni-ampy and Cd-M-ampy [M: Pd(II) or Pt(II)] compounds are analogous to each other. In these compounds, while the sphere of the center of the M(II) ion has a square pyramidal geometry, the coordination sphere of the Cd(II) ion is identified to have a distorted octahedral geometry. While one amine, one ampy, and four cyanide ligands coordinate to the Cd(II) ion, a three-dimensional coordination polymer forms by the coordination of these ligands to the Cd(II) and M(II) ions. Thermal degradation of the compounds occurs in two steps: degradation of ampy and amine ligands and release of the cyanide groups.

About the Authors

D. Karaağaç
Bursa Technical University
Turkey

Dursun Karaağaç, Department of Physics, Faculty of Engineering and Natural Sciences

Bursa



G. S. Kürkçüoğlu
Eskişehir Osmangazi University
Turkey

Güneş Süheyla Kürkçüoğlu, Department of Physics, Faculty of Sciences

Eskişehir



References

1. A. Legendre, J. R. A. Correa, G. Bannach, A. Mauro, M. Ionashiro, J. Therm. Anal. Calorim., 87, No. 3, 779–782 (2007).

2. J. Lefebvre, R. J. Batchelor, D. B. Leznoff, J. Am. Chem. Soc., 126, No. 49, 16117–16125 (2004).

3. A. Karadag, İ. Önal, A. Senocak, İ. Uçar, A. Bulut, O. Büyükgüngör, Polyhedron, 27, No. 1, 223–231 (2008).

4. T. Iwamoto, Inclusion Compounds, Eds. J. L. Atwood, J. E. D. Davies, D. D. Mc. Nicol, 5, 177 (1991).

5. T. Iwamoto, Comprehensive Supramolecular Chemistry, 6, 643 (1996).

6. J. Cernak, M. Orendac, I. Potocnak, J. Chomic, A. Orendacova, J. Skorsepa, A. Feher, J. Coord. Chem., 224, No. 1-2, 51–66 (2002).

7. M. Ohba, H. Okawa, Coord. Chem. Rev., 198, No. 1, 313–328 (2000).

8. M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaissermann, M. Seuleiman, C. Desplanches, A. Scuiller,

9. C. Train, R. Garde, G. Gelly, Coord. Chem. Rev., 190, 1023–1047 (1999).

10. K. Dunbar, R. Heintz, Prog. Inorg. Chem., 45, 283 (1997).

11. J. Lefebvre, D. Leznoff, In: Metal and Metalloid-Containing Polymers, 6, Wiley (2005).

12. N. Blom, A. Ludi, H. B. Burgi, K. Tichy, Acta Crystallogr. C, 40, No. 11, 1767–1769 (1984).

13. A. Rosenzweig, D. T. Cromer, Acta Cryst., 12, No. 10, 709–712 (1959).

14. M. S. Hussain, A. Al-Arfaj, M. N. Akhtar, A. A. Isab, Polyhedron, 15, No. 16, 2781–2785 (1996).

15. S. Akyüz, T. Akyüz, J. Mol. Struct., 744, 277–281 (2005).

16. A. de Oliveira Legendre, A. E. Mauro, M. A. R. de Oliveira, M. T. do Prado Gambardella, Inorg. Chem. Comm., 11, No. 8, 896–898 (2008).

17. B. Minceva-Sukarova, L. Andreeva, S. Akyüz, J. Mol. Struct., 834, 48–56 (2007).

18. D. Karaagac, G. S. Kürkcüoglu, O. Z. Yesilel, T. Hokelek, H. Dal, Z. Kristallogr., 227, 639–645 (2012).

19. C. H. Kline Jr., J. Turkevich, J. Chem. Phys., 12, 300–309 (1944).

20. S. Akyüz, A. Dempster, R. Morehouse, S. Suzuki, J. Mol. Struct., 17, No. 1, 105–125 (1973).

21. S. Bayari, Z. Kantarci, S. Akyüz, J. Mol. Struct., 351, 19–24 (1995).

22. S. Suzuki, W. Orvilelle-Thomas, J. Mol. Struct., 37, No. 2, 321–327 (1977).

23. R. Morehouse, K. Aytaç, D. Ülkü, Z. Kristallogr., 145, No. 1-2, 157–160 (1977).

24. M. L. Niven, G. C. Percy, Transit. Met. Chem., 3, No. 1, 267–271 (1978).

25. M. Shukla, N. Srivastava, S. Saha, T. Rao, S. Sunkari, Polyhedron, 30, No. 5, 754–763 (2011).

26. G. S. Kürkçüoglu, O. Z. Yesilel, İ. Kavlak, O. Büyükgüngör, J. Mol. Struct., 920, No. 1-3, 220–226 (2009).

27. R. P. Feazell, C. E. Carson, K. K. Klausmeyer, Inorg. Chem., 45, No. 6, 2635–2643 (2006).

28. M. Barquı́ n, M. J. González Garmendia, S. Pacheco, E. Pinilla, S. Quintela, J. M. Seco, M. R. Torres, Inorg. Chim. Acta, 357, No. 11, 3230–3236 (2004).

29. S. Akyüz, J. Mol. Struct., 449, No. 1, 23–27 (1998).

30. S. Akyüz, J. Mol. Struct., 482, 171–174 (1999).

31. C. G. Van Kralingen, J. Reedijk, A. L. Spek, Inorg. Chem., 19, No. 6, 1481–1485 (1980).

32. K. Krishnan, R.A. Plane, Inorg. Chem., 10, No. 11, 2428–2432 (1971).

33. T. Iwamoto, Inorg. Chim. Acta, 2, 269–272 (1968).

34. R.W. Berg, K. Rasmussen, Spectrochim. Acta A, 28, No. 12, 2319–2330 (1972).

35. R. W. Berg, K. Rasmussen, Spectrochim. Acta A, 29, No. 2, 319–327 (1973).

36. N. Kazuo, Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York, John Wiley and Sons, 1, 978–226 (1986).

37. D. Karaağaç, J. Appl. Spectrosc., 88, No. 2, 250–256 (2021).

38. D. Karaağaç, JOTCSA., 6, No. 3, 395–402 (2019).

39. A. G. Sharpe, The Chemistry of Cyano Complexes of the Transition Metals, Academic Press London (1976).

40. L. H. Jones, Inorganic Vibrational Spectroscopy, Dekker, New York (1971).

41. D. Sweeny, I. Nakagawa, S. I. Mizushima, J. Quagliano, J. Am. Chem. Soc., 78, No. 5, 889–892 (1956).

42. P. Vitoria, J. I. Beitia, J. M. Gutiérrez-Zorrilla, E. R. Sáiz, A. Luque, M. Insausti, J. J. Blanco, Inorg. Chem., 41, No. 17, 4396–4404 (2002).

43. P. Williams, P. Aymonino, Inorg. Chim. Acta, 113, No. 1, 37–41 (1986).

44. S. Akyüz, A. Dempster, R. Morehouse, Spectrochim. Acta A, 30, No. 1, 1989–2004 (1974).

45. V. Yılmaz, A. Karadaǧ, Thermochim. Acta, 348, No. 1, 121–127 (2000).


Review

For citations:


Karaağaç D., Kürkçüoğlu G.S. Spectroscopic and Thermal Study of the Cyanide-Bridged Heteronuclear Compounds [Cd(NH3)(μ-3-Aminomethylpyridine)M(μ-CN) 4]n (M: Pd(II) or Pt(II)). Zhurnal Prikladnoii Spektroskopii. 2024;91(4):602.

Views: 56


ISSN 0514-7506 (Print)