Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectroscopic Studies of Ho3+ Doped SrF2 Crystal for Green and Red Laser Applications

Abstract

Spectroscopic studies of Ho3+-doped SrF2 crystals were performed regarding applications in solid-state lasers. The crystal structure of the Ho:SrF2 crystal was investigated using single-crystal X-ray diffraction. SrF2 exists as a cubic structure with an Fm3m space group. A Raman shift of 288 cm–1 was observed for the Ho:SrF2 single crystal. SrF2 hosts with low-frequency vibrational modes are suitable for reducing nonradiative emissions while maximizing radiative emissions. The absorption spectrum was recorded in the visible region from 400 to 800 nm, yielding absorption lines at 416, 450, 468, 473, 484, 536, 638, and 643 nm. The fluorescence spectrum recorded at an excitation wavelength of 450 nm shows two emission bands at 546 and 656 nm, which correspond to green and red emission, respectively. The intensity parameters Ωλ (λ = 2, 4, and 6) were estimated using the Judd–Ofelt theory. For Ho:SrF2 single crystal, the calculated Ωλ are Ω2 = 0.14×10-20 cm2, Ω4 = 3.14×10-20 cm2, and Ω6 = 3.74×10–20 cm2. The radiative transition probabilities, radiative lifetimes, and branching ratios βR for Ho:SrF2 were determined using the Judd-Ofelt parameters. The 5S2 + 5F45I8 transition is more effective for population-building processes because of its lifetime (0.26 ms) and higher branching ratios (~82.86%). Ho:SrF2 is, therefore, a promising solid-state laser crystal for green and red spectral regions.

About the Authors

R. Kumar
Guru Jambheshwar University of Science & Technology
India

Ravinder Kumar, Department of Physics

Hisar, Haryana



D. Joseph
Guru Jambheshwar University of Science & Technology
India

David Joseph, Department of Physics

Hisar, Haryana



References

1. T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, B. H. T. Chai, Appl. Phys., 76 , 1413–1422 (1994).

2. F. Moglia, S. Müller, T. Calmano, G. Huber, 5th EPS-QEOD Europhoton Conf. 2012, Stockholm, Sweden, 25 (2012).

3. B. P. Scott, F. Zhao, R. S. F. Chang, N. Djeu, Opt. Lett., 18 , 113–115 (1993).

4. S. R. Bowman, S. O’Connor, N. J. Condon, Opt. Express, 20 , 12906–12911 (2012).

5. P. W. Metz, F. Moglia, F. Reichert, S. Müller, D.-T. Marzahl, N.-O. Hansen, C. Kränkel, G. Huber, Conference on Lasers and Electro-Optics (CLEO/Europe - EQEC) 2013, Munich, Germany, paper: CA-2.5 (2013).

6. B. N. Kazakov, M. S. Orlov, M. V. Petrov, A. L. Stolov, A. M. Tkachuk, Opt. and Spectrosc., 47 , 676 (1979).

7. H. Jensen, D. Castleberry, D. Gabbe, A. Linz, IEEE J. Quantum Electron., 9 , 665 (1973).

8. P. Rekha Rani, M. Venkateswarlu, Sk. Mahamuda, K. Swapna, Nisha Deopa, A. S. Rao, J. Alloys Compd., 787 , 503–518 (2019).

9. Wenqian Cao, Feifei Huang, Tao Wang, Renguang Ye, Ruoshan Lei, Ying Tian, Junjie Zhang, Shining Xu, Opt. Mater., 75 , 695–698 (2018).

10. M. Kochanowicz, J. Zmojda, P. Miluski, A. Baranowski, M. Leich, A. Schwuchow, M. Jeager, M. Kuwik, J. Pisarska, W. A. Pisarski, D. Dorosz, Opt. Mater. Express, 9 , 1450–1458 (2019).

11. E. Chicklis, C. Naiman, L. Esterowitz, R. Allen, IEEE J. Quantum Electron., 13 , 893–895 (1977).

12. J. Y. Allain, M. Monerie, H. Poignant, Electron. Lett., 26 , 261–263 (1990).

13. David S. Funk, J. G. Eden, IEEE J. Quantum Electron., 37 , 980–992 (2001).

14. A. A. Kaminski, L. Bahaty, P. Becker, H. J. Eichler, H. Rhee, Laser Phys. Lett., 4 , 668–673 (2007).

15. Bingrui Li, Xin Zhao, Edwin Yue Bun Pun, Hai Lin, Opt. Laser Technol., 107 , 8–14 (2018).

16. G. M. Sheldrick, Acta Cryst. A, 71 , 3–8 (2015).

17. L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, H. Puschmann, Acta Cryst. A, 71 , 59–75 (2015).

18. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 42 , No. 2, 339–341 (2009).

19. R. L. Rousseau, R. P. Baumann, S. P. S. Porto, J. Raman Spectrosc., 10 , No. 1, 253 (1981).

20. G. A. Kourouklis, E. Anastassakis, Phys. Rev. B, 34 , 1233 (1986).

21. F. Reichert, F. Moglia, P. W. Metz, A. Arcangeli, D.-T. Marzahl, S. Veronesi, D. Parisi, M. Fechner, M. Tonelli, G. Huber, Opt. Mater. Express, 5 , 88–101 (2014).

22. D. Rajesh, M. Dhamodhara Naidu, Y. C. Ratnakaram, A. Balakrishna, J. Lumin., 29 , No. 7, 854–860 (2014).

23. B. R. Judd, Phys. Rev., 127 , 750 (1962).

24. G. S. Ofelt, J. Chem. Phys., 37 , 511–520 (1962).

25. R. D. Peacock, Structure & Bonding, 22 , 83 (1975).

26. W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys., 49 , 4412 (1968).

27. S. Tanabe, T. Ohayagi, N. Soga, T. Hanada, Phys. Rev. B, 46 , 3305 (1992).

28. H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, A. Speghini, J. Non-Cryst. Solids, 240 , 66 (1998).

29. H. Takebe, Y. Nageno, K. Morinaga, J. Am. Ceram. Soc., 78 , 61 (1995).

30. B. M. Walsh, P. B. Norman, D. B. Baldassare, J. Appl. Phys., 83 , 2772 (1998)

31. V. D. Rodríguez, J. Del Castillo, A. C. Yanes, J. Méndez-Ramos, M. Torres, J. Peraza, Opt. Mater., 29 , 1159 (2007).

32. J. Peng, H. Xia, P. Wang, H. Hu, L. Tang, Y. Zhang, H. Wang, B. Zhang, J. Mater. Sci. Technol., 30 , 910 (2014).

33. R. S. Quimby, N. J. Condon, S. P. O’Connor, S. R. Bowman, Opt. Mater., 34 , 1603 (2012).

34. H. M. Ha, T. T. Q. Hoa, L. V. Vu, N. N. Long, J. Mater Sci.: Mater. Electron., 29 , 1607–1613 (2018).


Review

For citations:


Kumar R., Joseph D. Spectroscopic Studies of Ho3+ Doped SrF2 Crystal for Green and Red Laser Applications. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):603.

Views: 192


ISSN 0514-7506 (Print)