![Open Access](https://zhps.ejournal.by/lib/pkp/templates/images/icons/opened.png)
![Restricted Access](https://zhps.ejournal.by/lib/pkp/templates/images/icons/closed.png)
Photoluminescence Properties of Novel BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) Blue, Green, Orange-Red Emitting Phosphors for White Light Emitting Diodes
Abstract
A new class of BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) phosphors were synthesized with a solid-state reaction method. The minor concentrations of various rare earth (Tb3+, Dy3+, and Sm3+) ions and transition metal (Pb2+) ions activated in the BaLiZn3(BO3) host matrix were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence spectroscopy. The XRD results of BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) phosphors confirmed that all the samples have a monoclinic phase. SEM studies revealed that the morphology of BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) phosphors was irregular. The photoluminescence emission and excitation spectra show that these phosphors can be effectively excited by near-ultraviolet light-emitting diodes (n-UV), and they all exhibit an efficient orange-red (Sm3+, 4G5/2 → 6H7/2), green (Tb3+, 5D4 → 7F5), yellow (Dy3+, 4F9/2 → 6H13/2), and blue (Pb2+ ,3P1 → 1S0) emission. All of the above results confirmed that the obtained phosphors could be a potential candidate for n-UV-excited WLEDs.
About the Authors
E. YildizTurkey
Department of Basic Sciences and Health
Yozgat
E. Erdoğmuş
Turkey
Faculty of Engineering, Architecture and Design, Department of Environmental Engineering
Bartın
G. Annadurai
China
Department of Physics and Optoelectronics
Taiyuan
References
1. Y. Hua, Z. Li, Inorg. Chem. Commun., 128, 108576–108582 (2021).
2. X. Ding, Y. Wang, ACS Appl. Mater. İnterfaces, 9, 23983–23994 (2017).
3. J. Zhou, F. Huang, J. Xu, H. Chen, Y. Wang, J. Mater. Chem. C, 3, 3023–3028 (2015).
4. X. Zhang, L. Zhou, Q. Pang, M. Gong, RSC Adv., 5, 54622–54628 (2015).
5. J. Grigorjevaite, A. Katelnikovas, ACS Appl. Mater. İnterfaces, 8, 31772–31782 (2016).
6. M. Janulevicius, P. Marmokas, M. Misevicius, J. Grigorjevaite, L. Mikoliunaite, Sci. Rep., 6, 1–12 (2016).
7. G. S. R. Raju, E. Pavitra, S. K. Hussain, D. Balaji, J. S. Yu, J. Mater. Chem. C, 4, 1039–1050 (2016).
8. M. He, G. L. Huang, H. L. Tao, Z. H. Zhang, Phys. B: Cond. Matter, 407, 2725–2728 (2012).
9. F. B. Xiong, J. J. Luo, H. F. Lin, X. G. Meng, Y. P. Wang, Optik, 156, 31–38 (2018).
10. A. B. Kuznetsov, K. A. Kokh, N. G. Kononova, V. S. Shevchenko, S.V. Rashchenko. J. Lumin., 217, 116755–116763 (2020).
11. M. S. Tarasenko, R. E. Nikolaev, A. M. Yakovleva, V. A. Trifonov, A. S. Sukhikh, N. G. Naumov, J. Struct. Chem., 64, 1715–1723 (2023).
12. M. Peddaiah, P. Ankoji, B. H. Rudramadevi, Mater. Today: Proc., 46, 184–189 (2021).
13. V. A. Krut’ko, M. G., Komova, D. V. Pominova, G. E. Nikiforova, A. V. Gavrikov, K. V. Petrova, A. A. Sadovnikov, Russ. J. Inorg. Chem., 67, 2256–2263 (2022).
14. T. B. Bekker, A. A. Ryadun, A. V. Davydov, S. V. Rashchenko, Dalton Transact., 52, 8402–8413 (2023).
15. S. Saha, H. J. Kim, A. Khan, J. Cho, S. Kang, Ceram. Int., 48, 10667–10676 (2022).
16. Y. P. Biryukov, R. S. Bubnova, A. V. Povolotskiy, S. K. Filatov, Ceram. Int., 50, 3491–3496 (2024).
17. N. I. Steblevskaya, M. V. Belobeletskaya, M. A. Medkov, D. K. Shlyk, Russ. J. Inorg. Chem., 67, 1228–1238 (2022).
18. E. Yildiz, E. Erdoğmuş, Int. J. Appl. Ceram. Technol., 15, 1287–1291 (2018).
19. J. Y. Jung, J. Kim, Y. S. Shim, D. Hwang, C. S. Son, Materials, 13, 4165–4171 (2020).
20. P. Balakrishnan, S. Masilla Moses Kennedy, J. Lumin., 253, 119446–119453 (2023).
21. D. R. Taikar, S. Tamboli, S. J. Dhoble, Optik, 142, 183–190 (2017).
22. E. Erdoğmuş, E. Yildiz, J. Appl. Spectrosc., 87, 615–620 (2020).
23. J. Su, R. Pang, H. Wu, S. Wang, T. Tan, J. Rare Earths, 40, 1014–1021 (2022).
24. R. D. Shannon, Acta Crystallographica, A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32, 751–767 (1976).
25. S. Chen, Y. Wang, B. Zhao, B. Deng, Y. Liu, J. Lumin., 237, 118148 (2021).
26. V. Singh, Y. R. Parauha, S. J. Dhoble, V. K. Kummara, N. Ravi, Optik, 242, 67229–67235 (2021).
27. S. Shimono, T. Izaki, N. Tanaka Y. Nanai, T. Morimoto, Mater. Res. Bull., 143, 111441–111448 (2021).
28. K. S. Lim, N. Vijaya, C. R. Kesavulu, C. K. Jayasankar, Opt. Mater., 35, 1557–1563 (2013).
29. Z. Fan, S. Bi, J. Wang, H. J. Seo, J. Lumin., 252, 119396–119403 (2022).
30. G. E. Malashkevich, G. I. Semkova, A. P. Stupak, A. V. Sukhodolov, Phys. Solid State, 46, 1425–1431 (2004).
31. A. Ciric, S. Stojadinovic, J. Alloys and Compd., 832, 154907 (2020).
32. P. Sehrawat, R. K. Malik, R. Punia, M. Sheoran, S. Singh, Chem. Phys. Lett., 781, 138985–138992 (2021).
33. W. Li, G. Fang, Y. Wang, Z. You, J. Li, Vacuum, 188, 110215–110221 (2021).
34. X. Yang, Q. Li, X. Li, B. Ma, Opt. Mater., 107, 110133–110139 (2020).
35. İ. Pekgözlü, S. Seyyidoğlu, S. Taşcıoğlu, J. Lumin., 128, 1541–1543 (2008).
36. D. R. Taikar, S. Tamboli, S. J. Dhoble, Optik, 142, 183–190 (2017).
Review
For citations:
Yildiz E., Erdoğmuş E., Annadurai G. Photoluminescence Properties of Novel BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) Blue, Green, Orange-Red Emitting Phosphors for White Light Emitting Diodes. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):604.