Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Photoluminescence Properties of Novel BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) Blue, Green, Orange-Red Emitting Phosphors for White Light Emitting Diodes

Abstract

A new class of BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) phosphors were synthesized with a solid-state reaction method. The minor concentrations of various rare earth (Tb3+, Dy3+, and Sm3+) ions and transition metal (Pb2+) ions activated in the BaLiZn3(BO3) host matrix were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence spectroscopy. The XRD results of BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) phosphors confirmed that all the samples have a monoclinic phase. SEM studies revealed that the morphology of BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) phosphors was irregular. The photoluminescence emission and excitation spectra show that these phosphors can be effectively excited by near-ultraviolet light-emitting diodes (n-UV), and they all exhibit an efficient orange-red (Sm3+, 4G5/26H7/2), green (Tb3+, 5D47F5), yellow (Dy3+, 4F9/26H13/2), and blue (Pb2+ ,3P11S0) emission. All of the above results confirmed that the obtained phosphors could be a potential candidate for n-UV-excited WLEDs.

About the Authors

E. Yildiz
Yozgat Bozok University, Cannabis Research Institute
Turkey

Department of Basic Sciences and Health

Yozgat



E. Erdoğmuş
Bartın University
Turkey

Faculty of Engineering, Architecture and Design, Department of Environmental Engineering

Bartın



G. Annadurai
Taiyuan University of Technology
China

Department of Physics and Optoelectronics

Taiyuan



References

1. Y. Hua, Z. Li, Inorg. Chem. Commun., 128, 108576–108582 (2021).

2. X. Ding, Y. Wang, ACS Appl. Mater. İnterfaces, 9, 23983–23994 (2017).

3. J. Zhou, F. Huang, J. Xu, H. Chen, Y. Wang, J. Mater. Chem. C, 3, 3023–3028 (2015).

4. X. Zhang, L. Zhou, Q. Pang, M. Gong, RSC Adv., 5, 54622–54628 (2015).

5. J. Grigorjevaite, A. Katelnikovas, ACS Appl. Mater. İnterfaces, 8, 31772–31782 (2016).

6. M. Janulevicius, P. Marmokas, M. Misevicius, J. Grigorjevaite, L. Mikoliunaite, Sci. Rep., 6, 1–12 (2016).

7. G. S. R. Raju, E. Pavitra, S. K. Hussain, D. Balaji, J. S. Yu, J. Mater. Chem. C, 4, 1039–1050 (2016).

8. M. He, G. L. Huang, H. L. Tao, Z. H. Zhang, Phys. B: Cond. Matter, 407, 2725–2728 (2012).

9. F. B. Xiong, J. J. Luo, H. F. Lin, X. G. Meng, Y. P. Wang, Optik, 156, 31–38 (2018).

10. A. B. Kuznetsov, K. A. Kokh, N. G. Kononova, V. S. Shevchenko, S.V. Rashchenko. J. Lumin., 217, 116755–116763 (2020).

11. M. S. Tarasenko, R. E. Nikolaev, A. M. Yakovleva, V. A. Trifonov, A. S. Sukhikh, N. G. Naumov, J. Struct. Chem., 64, 1715–1723 (2023).

12. M. Peddaiah, P. Ankoji, B. H. Rudramadevi, Mater. Today: Proc., 46, 184–189 (2021).

13. V. A. Krut’ko, M. G., Komova, D. V. Pominova, G. E. Nikiforova, A. V. Gavrikov, K. V. Petrova, A. A. Sadovnikov, Russ. J. Inorg. Chem., 67, 2256–2263 (2022).

14. T. B. Bekker, A. A. Ryadun, A. V. Davydov, S. V. Rashchenko, Dalton Transact., 52, 8402–8413 (2023).

15. S. Saha, H. J. Kim, A. Khan, J. Cho, S. Kang, Ceram. Int., 48, 10667–10676 (2022).

16. Y. P. Biryukov, R. S. Bubnova, A. V. Povolotskiy, S. K. Filatov, Ceram. Int., 50, 3491–3496 (2024).

17. N. I. Steblevskaya, M. V. Belobeletskaya, M. A. Medkov, D. K. Shlyk, Russ. J. Inorg. Chem., 67, 1228–1238 (2022).

18. E. Yildiz, E. Erdoğmuş, Int. J. Appl. Ceram. Technol., 15, 1287–1291 (2018).

19. J. Y. Jung, J. Kim, Y. S. Shim, D. Hwang, C. S. Son, Materials, 13, 4165–4171 (2020).

20. P. Balakrishnan, S. Masilla Moses Kennedy, J. Lumin., 253, 119446–119453 (2023).

21. D. R. Taikar, S. Tamboli, S. J. Dhoble, Optik, 142, 183–190 (2017).

22. E. Erdoğmuş, E. Yildiz, J. Appl. Spectrosc., 87, 615–620 (2020).

23. J. Su, R. Pang, H. Wu, S. Wang, T. Tan, J. Rare Earths, 40, 1014–1021 (2022).

24. R. D. Shannon, Acta Crystallographica, A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32, 751–767 (1976).

25. S. Chen, Y. Wang, B. Zhao, B. Deng, Y. Liu, J. Lumin., 237, 118148 (2021).

26. V. Singh, Y. R. Parauha, S. J. Dhoble, V. K. Kummara, N. Ravi, Optik, 242, 67229–67235 (2021).

27. S. Shimono, T. Izaki, N. Tanaka Y. Nanai, T. Morimoto, Mater. Res. Bull., 143, 111441–111448 (2021).

28. K. S. Lim, N. Vijaya, C. R. Kesavulu, C. K. Jayasankar, Opt. Mater., 35, 1557–1563 (2013).

29. Z. Fan, S. Bi, J. Wang, H. J. Seo, J. Lumin., 252, 119396–119403 (2022).

30. G. E. Malashkevich, G. I. Semkova, A. P. Stupak, A. V. Sukhodolov, Phys. Solid State, 46, 1425–1431 (2004).

31. A. Ciric, S. Stojadinovic, J. Alloys and Compd., 832, 154907 (2020).

32. P. Sehrawat, R. K. Malik, R. Punia, M. Sheoran, S. Singh, Chem. Phys. Lett., 781, 138985–138992 (2021).

33. W. Li, G. Fang, Y. Wang, Z. You, J. Li, Vacuum, 188, 110215–110221 (2021).

34. X. Yang, Q. Li, X. Li, B. Ma, Opt. Mater., 107, 110133–110139 (2020).

35. İ. Pekgözlü, S. Seyyidoğlu, S. Taşcıoğlu, J. Lumin., 128, 1541–1543 (2008).

36. D. R. Taikar, S. Tamboli, S. J. Dhoble, Optik, 142, 183–190 (2017).


Review

For citations:


Yildiz E., Erdoğmuş E., Annadurai G. Photoluminescence Properties of Novel BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) Blue, Green, Orange-Red Emitting Phosphors for White Light Emitting Diodes. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):604.

Views: 87


ISSN 0514-7506 (Print)