Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Structural and Photoluminescence Studies of p-(n-Heptyl) Benzoic Acid Liquid Crystals Dispersed with ZnO Nanoparticles

Abstract

Synthesis, structural and photoluminescence studies of p-(n-heptyl) benzoic acid (7ba) liquid crystalline (LC) compound with the homogeneous dispersion of ZnO nanoparticles (NPs) in different weight concentrations (i.e., 1–2.5 wt.%) were undertaken. The synthesized samples were subsequently characterized by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-Vis) spectroscopy, differential scanning calorimetry (DSC), optical polarising microscopy (POM), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) spectroscopy. From the XRD studies, the diffraction peaks observed were well resolved indicating the presence of ZnO NPs. The particle size was found to be 60 nm. SEM studies revealed the uniform dispersion and the presence of ZnO NPs in the LC samples. From the DSC analysis, the temperatures at which the phase changes take place and the corresponding enthalpy values were estimated. FTIR spectra gave information about the various functional groups present in the samples. PL studies showed the peak at 663 nm due to the presence of point defects within the bandgap-like vacancies and interstitials known as deep-level emission.

About the Authors

P. Jayaprada
Maris Stella College
India

Department of Physics

Vijayawada



M. C. Rao
Andhra Loyola College
India

Department of Physics

Vijayawada



B. T. P. Madhav
LCRC-R&D, Koneru Lakshmaiah Education Foundation
India

Department of ECE

Guntur



P. Pardhasaradhi
LCRC-R&D, Koneru Lakshmaiah Education Foundation
India

Department of ECE

Guntur



R. K. N. R. Manepalli
Andhra University
India

Department of Physics

Vishakhapatnam



References

1. H. K. Bisoyi, S. Kumar, Chem. Soc. Rev., 40, 306–319 (2011).

2. G. W. Gray, In: Handbook of Liquid Crystals, 1, Eds. D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill, Wiley-VCH, Weinheim, 1–16 (1998).

3. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, C. S. Hsu, J. Appl. Phys., 43, 7634–7638 (2004).

4. S. T. Wu, Q. T. Zhang, S. Marder, Jpn. J. Appl. Phys., 37, L1254–L1256 (1998).

5. G. K. Auernhammer, J. B. Zhao, D. Ullrich Vollmer, Eur. Phys. J. E., 30, 387–394 (2009).

6. D. Sikharulidze, Appl. Phys. Lett., 86, 033507 (2005).

7. T. Hegmann, H. Qi, B. Kinkead, V. M. Marx, H. Girgis, P. A. Heiney, Can. J. Met. Mater. Sci., 48, No. 1, 1–8 (2009).

8. P. Martinot-Lagarde, G. Durand, J. Phys., 42, 269–275 (1981).

9. M. Rahman, W. Lee, J. Phys. D: Appl. Phys., 42, 063001 (2009).

10. A. K. Misra, A. K. Srivastava, J. P. Shukla, R. Manohar, Phys. Scr., 78, 065602 (2008).

11. J. L. Gomez, O. Tigli, J. Mater. Sci., 48, No. 2, 612–624 (2013).

12. U. Manzoor, M. Islam, L. Tabassam, S. U. Rahman, Phys. E, 41, 1669–1672 (2015).

13. J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, Q. Y. Tu, Appl. Phys. Lett., 93, 173104 (2008).

14. A. V. Kabashin, A. Trudeau, W. Marine, Appl. Phys. Lett., 91, 201101 (2007).

15. S. D. Haranath, A. G. Sahai, B. K. Joshi Gupta, Nanotech., 20, 42570 (2009).

16. X. D. Li, T. P. Chen, P. Liu, Y. Liu, K. C. Leong, Opt. Express, 21, 14131–14138 (2013).

17. A. L. Schoenhalz, J. T. Arantes, A. Fazzio, G. M. Dalpian, J. Phys. Chem. C, 114, 18293–18297 (2010).

18. H. Jiang, N. Toshima, Chem. Lett., 38, 566–567 (2009).

19. A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, J. Appl. Phys., 110, 064111 (2011).

20. S. K. Gupta, A. Joshi, M. Kaur, J. Chem. Sci., 122, 57–62 (2010).

21. Z. Fan, J. G. Lu, IEEE, 2, 834–836 (2005).

22. Z. Fan, J. G. Lu, IEEE Trans. Nanotech., 5, 293–303 (2006).

23. Z. Zhao, W. Lei, X. Zhang, B. Wang, H. Jian, Sensors, 10, 1216–1231 (2010).

24. S. Rihana Banu, C. M. Subhan, R. Dinesh, K. Fakruddin, J. Mol. Cryst. Liq. Cryst., 665, 238–247 (2018).

25. R. K. N. R. Manepalli, G. Giridhar, P. Pardhasaradhi, Mater. Today Proc., l5, 2666–2676 (2018).

26. A. Sharma, P. Malik, R. Dhar, P. Kumar, Bull. Mater. Sci., 42, 206–215 (2019).

27. N. S. Sariciftci, U. Lemmer, D. Vacar, A. J. Heeger, R. A. J. Janssen, Adv. Mater., 8, 651–654 (1996).

28. C. N. R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York and London (1963).

29. I. Markova-Deneva, J. Univ. Chem. Tech. Metallurgy, 45, 351–378 (2010).

30. V. Parthasarathi, G. Thilagavathi, Int. J. Pharm. Sci., 3, 1–7 (2012).

31. Ch. Ravi Shanar Kumar, S. Sreehari Sastry, T. Madhu Mohan, Int. J. Mod. Phys. B, 23, No. 14, 3187–3194 (2009).

32. M. Seshu Kumar, R. V. S. S. N. Ravi Kumar, M. C. Rao, J. Appl. Spectrosc., 8, No. 3, 435–445 (2022).

33. S. A. Kadinskaya, V. M. Kondratev et al., Nanomater., 13, No. 1, 58 (2023).

34. F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, I. Tanaka, J. Appl. Phys., 90, No. 2, 824–828 (2001).

35. V. Kumar, N. Singh, A. Kapoor, O. M. Ntwaeaborwa, H. C. Swart, J. Col. Interface Sci., 428, 8–15 (2014).

36. T. Akilan, N. Srinivasan, R. Saravanan, Mater. Sci. Semicond. Proc., 30, 381–387 (2015).


Review

For citations:


Jayaprada P., Rao M.C., Madhav B., Pardhasaradhi P., Manepalli R. Structural and Photoluminescence Studies of p-(n-Heptyl) Benzoic Acid Liquid Crystals Dispersed with ZnO Nanoparticles. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):605.

Views: 177


ISSN 0514-7506 (Print)