Structural and Photoluminescence Studies of p-(n-Heptyl) Benzoic Acid Liquid Crystals Dispersed with ZnO Nanoparticles
Abstract
Synthesis, structural and photoluminescence studies of p-(n-heptyl) benzoic acid (7ba) liquid crystalline (LC) compound with the homogeneous dispersion of ZnO nanoparticles (NPs) in different weight concentrations (i.e., 1–2.5 wt.%) were undertaken. The synthesized samples were subsequently characterized by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-Vis) spectroscopy, differential scanning calorimetry (DSC), optical polarising microscopy (POM), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) spectroscopy. From the XRD studies, the diffraction peaks observed were well resolved indicating the presence of ZnO NPs. The particle size was found to be 60 nm. SEM studies revealed the uniform dispersion and the presence of ZnO NPs in the LC samples. From the DSC analysis, the temperatures at which the phase changes take place and the corresponding enthalpy values were estimated. FTIR spectra gave information about the various functional groups present in the samples. PL studies showed the peak at 663 nm due to the presence of point defects within the bandgap-like vacancies and interstitials known as deep-level emission.
About the Authors
P. JayapradaIndia
Department of Physics
Vijayawada
M. C. Rao
India
Department of Physics
Vijayawada
B. T. P. Madhav
India
Department of ECE
Guntur
P. Pardhasaradhi
India
Department of ECE
Guntur
R. K. N. R. Manepalli
India
Department of Physics
Vishakhapatnam
References
1. H. K. Bisoyi, S. Kumar, Chem. Soc. Rev., 40, 306–319 (2011).
2. G. W. Gray, In: Handbook of Liquid Crystals, 1, Eds. D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill, Wiley-VCH, Weinheim, 1–16 (1998).
3. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, C. S. Hsu, J. Appl. Phys., 43, 7634–7638 (2004).
4. S. T. Wu, Q. T. Zhang, S. Marder, Jpn. J. Appl. Phys., 37, L1254–L1256 (1998).
5. G. K. Auernhammer, J. B. Zhao, D. Ullrich Vollmer, Eur. Phys. J. E., 30, 387–394 (2009).
6. D. Sikharulidze, Appl. Phys. Lett., 86, 033507 (2005).
7. T. Hegmann, H. Qi, B. Kinkead, V. M. Marx, H. Girgis, P. A. Heiney, Can. J. Met. Mater. Sci., 48, No. 1, 1–8 (2009).
8. P. Martinot-Lagarde, G. Durand, J. Phys., 42, 269–275 (1981).
9. M. Rahman, W. Lee, J. Phys. D: Appl. Phys., 42, 063001 (2009).
10. A. K. Misra, A. K. Srivastava, J. P. Shukla, R. Manohar, Phys. Scr., 78, 065602 (2008).
11. J. L. Gomez, O. Tigli, J. Mater. Sci., 48, No. 2, 612–624 (2013).
12. U. Manzoor, M. Islam, L. Tabassam, S. U. Rahman, Phys. E, 41, 1669–1672 (2015).
13. J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, Q. Y. Tu, Appl. Phys. Lett., 93, 173104 (2008).
14. A. V. Kabashin, A. Trudeau, W. Marine, Appl. Phys. Lett., 91, 201101 (2007).
15. S. D. Haranath, A. G. Sahai, B. K. Joshi Gupta, Nanotech., 20, 42570 (2009).
16. X. D. Li, T. P. Chen, P. Liu, Y. Liu, K. C. Leong, Opt. Express, 21, 14131–14138 (2013).
17. A. L. Schoenhalz, J. T. Arantes, A. Fazzio, G. M. Dalpian, J. Phys. Chem. C, 114, 18293–18297 (2010).
18. H. Jiang, N. Toshima, Chem. Lett., 38, 566–567 (2009).
19. A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, J. Appl. Phys., 110, 064111 (2011).
20. S. K. Gupta, A. Joshi, M. Kaur, J. Chem. Sci., 122, 57–62 (2010).
21. Z. Fan, J. G. Lu, IEEE, 2, 834–836 (2005).
22. Z. Fan, J. G. Lu, IEEE Trans. Nanotech., 5, 293–303 (2006).
23. Z. Zhao, W. Lei, X. Zhang, B. Wang, H. Jian, Sensors, 10, 1216–1231 (2010).
24. S. Rihana Banu, C. M. Subhan, R. Dinesh, K. Fakruddin, J. Mol. Cryst. Liq. Cryst., 665, 238–247 (2018).
25. R. K. N. R. Manepalli, G. Giridhar, P. Pardhasaradhi, Mater. Today Proc., l5, 2666–2676 (2018).
26. A. Sharma, P. Malik, R. Dhar, P. Kumar, Bull. Mater. Sci., 42, 206–215 (2019).
27. N. S. Sariciftci, U. Lemmer, D. Vacar, A. J. Heeger, R. A. J. Janssen, Adv. Mater., 8, 651–654 (1996).
28. C. N. R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York and London (1963).
29. I. Markova-Deneva, J. Univ. Chem. Tech. Metallurgy, 45, 351–378 (2010).
30. V. Parthasarathi, G. Thilagavathi, Int. J. Pharm. Sci., 3, 1–7 (2012).
31. Ch. Ravi Shanar Kumar, S. Sreehari Sastry, T. Madhu Mohan, Int. J. Mod. Phys. B, 23, No. 14, 3187–3194 (2009).
32. M. Seshu Kumar, R. V. S. S. N. Ravi Kumar, M. C. Rao, J. Appl. Spectrosc., 8, No. 3, 435–445 (2022).
33. S. A. Kadinskaya, V. M. Kondratev et al., Nanomater., 13, No. 1, 58 (2023).
34. F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, I. Tanaka, J. Appl. Phys., 90, No. 2, 824–828 (2001).
35. V. Kumar, N. Singh, A. Kapoor, O. M. Ntwaeaborwa, H. C. Swart, J. Col. Interface Sci., 428, 8–15 (2014).
36. T. Akilan, N. Srinivasan, R. Saravanan, Mater. Sci. Semicond. Proc., 30, 381–387 (2015).
Review
For citations:
Jayaprada P., Rao M.C., Madhav B., Pardhasaradhi P., Manepalli R. Structural and Photoluminescence Studies of p-(n-Heptyl) Benzoic Acid Liquid Crystals Dispersed with ZnO Nanoparticles. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):605.