Enhancement of Calcium LIBS Signals by the Simultaneous Use of Nanoparticles Together with the Application of a Weak Electric Field
Abstract
One of the inherent limitations associated with laser-induced breakdown spectroscopy (LIBS) in the identification of elements lies in the strength of the emission signals. Several approaches exist to enhance the emission capacity of LIBS. In this particular investigation, our focus was on amplifying the signal intensity of LIBS through the utilization of two techniques. These techniques include the application of a low-power electric field within the zone where plasma is formed, in conjunction with the utilization of nanoparticles on the surface of the sample. Specifically, our analysis involved the examination of samples consisting of metallic Zn powder as the matrix element, with the incorporation of small quantities of Ca in the form of CaCO3. The combination of these two methods resulted in unprecedented outcomes, demonstrating a 3.5-fold increase in samples containing 0.05% w/w of CaCO3 when subjected to an electric field of 60 V/cm, while bearing nanoparticles on their surface.
Keywords
About the Authors
N. BoggioArgentina
Norberto Boggio
San Martin, Buenos Aires
J. Vorobioff
Argentina
Juan Vorobioff
San Martín, Buenos Aires
C. A. Rinaldi
Argentina
Carlos A. Rinaldi
San Martin, Buenos Aires
References
1. A. W. Miziolek, V. Palleschi, I. Schechter, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications, Cambridge University Press (2006).
2. T. Hussain, M. A. Gondal, J. Phys.: Conf. Ser. IOP Publ., 439, 012050, 1–13 (2013).
3. J. Peng, F. Liu, F. Zhou, K. Song, C. Zhang, Lanhan Ye, Y. He, Trends Anal. Chem., 85, 260–272 (2016).
4. G. S. Senesi, N. Senesi, Anal. Chim. Acta, 938, 7–17 (2016).
5. D. Meng, N. Zhao, M. Ma, Li Fang, Y. Gu, Yao Jia, Jianguo Liu, W. Liu, Appl. Opt., 56, No. 18, 5204–5210 (2017).
6. R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, C. Gehlen, Spectrochim. Acta B, 93, 41–51 (2014).
7. M. Markiewicz-Keszycka, X. Cama-Moncunill, Maria P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, C. Sullivan, Trends in Food Sci. & Tech., 65, 80–93 (2017).
8. N. Khajehzadeh, O. Haavisto, L. Koresaar, Minerals Eng., 98, 101–109 (2016).
9. H. K. Sanghapi, K. Ayyalasomayajula, F. Y. Yueha, J. P. Singh, D. McIntyre, J. C. Jain, J. Nakano, Spectrochim. Acta B, 115, 40–45 (2016).
10. V. I. Babushok, F. C. De Lucia Jr., J. L. Gottfried, C. A. Munson, A. W. Miziolek, Spectrochim. Acta B, 61, 999–1014 (2006).
11. H. Telle, D. Beddows, G. Morris, O. Samek, Spectrochim. Acta B, 56, 947–960 (2001).
12. A. De Giacomo, M. Dell'Aglio, R. Gaudiuso, C. Koral, G. Valenza, J. Anal. At. Spectrom., 31, 1566–1573 (2016).
13. L. Sládková, D. Prochazka, P. Pořízka, P. Škarková, M. Remešová, A. Hrdlička, K. Novotný, L. Čelko, J. Kaiser, Spectrochim. Acta B, 127, 48–55 (2017).
14. A. Elhassan, H. Elmoniem, A. K. Kassem, M. A. Hairth, J. Adv. Res., 1, 129–136 (2010).
15. W. Zhou, K. Li, H. Qian, Z. Ren, Y. Yu, Appl. Opt., 51, N 7, B42–B48 (2012).
16. A. M. Beccaglia, C. A. Rinaldi, J. C. Ferrero, Anal. Chim. Acta, 579, No. 1, 11–16 (2006).
17. SpectraGryph V 1.2.16 by Friedrich Menges, https://www.effemm2.de
18. NIST Atomic Spectra Database, 2023, USA, http://www.nist.gov/pml/data/asd.cfm
19. R. Ahmed, A. Jabbar, Z. A. Umar, M. A. Baig, Plasma Sci. and Technol., 23, No. 4, 045505 (2021).
20. L. I. Kexue, W. Zhou, Q. Shen, J. Shao, H. Qian, Spectrochim. Acta B, 65, 420–424 (2010).
Review
For citations:
Boggio N., Vorobioff J., Rinaldi C.A. Enhancement of Calcium LIBS Signals by the Simultaneous Use of Nanoparticles Together with the Application of a Weak Electric Field. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):607.