An Advanced Chemometric Model Applied to Ratiometric Surface-Enhanced Raman Scattering for Monitoring Blood Glucose
Abstract
An advanced chemometric model based on ratiometric surface-enhanced Raman scattering (SERS) was developed for the quantification of glucose in serum samples. In the absence of glucose, it was mainly the SERS signal of silver nanoparticles (AgNPs)-o-phenylenediamine (OPD). When glucose was added, glucose oxidase catalyzed glucose to produce hydrogen peroxide (H2O2), which oxidized OPD to produce 2,3-diaminophenazine (DAP) in the presence of AgNPs. The generated DAP exhibited a new strong SERS signal and changed the Raman peak ratio between DAP and OPD. Without using any internal standard, the advanced chemometric model mitigated the fluctuations in SERS intensity and achieved accurate concentration predictions for glucose in serum samples with recoveries in the ranges of 92.8–104.8%. The accuracy of the quantitative results obtained using the proposed method is comparable with that of the reference method – glucometer. The proposed sensor showed high sensitivity and selectivity in detecting glucose with a limit of detection (LOD) of 0.28 μM. Additionally, the presented SERS sensor demonstrated great promise in determining H2O2-related metabolites in real serum samples.
About the Authors
Y. TangChina
Hunan Key Lab of Biomedical Materials and Devices; State Key Laboratory of Chemo/Biosensing and Chemometrics
Zhuzhou; Changsha
S.-W. Zhang
China
Hunan Key Lab of Biomedical Materials and Devices
Zhuzhou
Q. Wang
China
Hunan Key Lab of Biomedical Materials and Devices
Zhuzhou
J.-J. Han
China
Hunan Key Lab of Biomedical Materials and Devices
Zhuzhou
L. Chao
China
Hunan Key Lab of Biomedical Materials and Devices
Zhuzhou
L.-B. Nie
China
Hunan Key Lab of Biomedical Materials and Devices
Zhuzhou
Y. Chen
China
Hunan Key Lab of Biomedical Materials and Devices; State Key Laboratory of Chemo/Biosensing and Chemometrics
Zhuzhou; Changsha
T. Wang
China
State Key Laboratory of Chemo/Biosensing and Chemometrics
Changsha
References
1. Z. Pan, J. Yang, W. Song, P. Luo, J. Zou, J. Peng, H. Bo, Z. Luo, New J. Chem., 45 , 3059–3066 (2021).
2. Y. Zheng, S. H. Ley, F. B. Hu, Nat. Rev. Endocrinol., 14 , 88–98 (2018).
3. Y. Cui, L. Zhang, M. Zhang, X. Yang, L. Zhang, J. Kuang, G. Zhang, Q. Liu, H. Guo, Q. Meng, Sci. Rep., 7 , 1–9 (2017).
4. T. A. Gaziano, Circ.-Cardiovasc. Qual., 8 , 535–538 (2015).
5. C. Wanner, S. E. Inzucchi, J. M. Lachin, D. Fitchett, M. von Eynatten, M. Mattheus, O. E. Johansen, H. J. Woerle, U. C. Broedl, B. Zinman, New Engl. J. Med., 375 , 323–334 (2016).
6. G. Pambianco, T. Costacou, D. Ellis, D. J. Becker, R. Klein, T. J. Orchard, Diabetes, 55 , 1463–1469 (2006).
7. M. Lundgren, B. Jonsdottir, H. E. Larsson, Diabetologia., 62 , 53–57 (2019).
8. K. Kamishima, H. Ogawa, K. Jujo, J. Yamaguchi, N. Hagiwara, Diabetes Res. Clin. Pr., 149 , 69–77 (2019).
9. H. Wang, L. Hu, P. Zhou, L. Ouyang, B. Chen, Y. Li, Y. Chen, Y. Zhang, J. Zhou, J. Food Compos. Anal., 96 , 103730 (2019).
10. M. H. Hassan, C. Vyas, B. Grieve, P. Bartolo, Sensors., 21 , 4672 (2021).
11. F. Luo, Y. Lin, L. Zheng, X. Lin, Y. Chi, ACS Appl. Mater. Inter., 7 , 11322–11329 (2015).
12. M. J. Cho, S. Y. Park, Sensor. Actuat. B-Chem., 282 , 719–729 (2019).
13. X. Liu, D. Huang, C. Lai, L. Qin, G. Zeng, P. Xu, B. Li, H. Yi, M. Zhang, Small, 15 , 1900133 (2019).
14. J. Ju, C. Hsieh, Y. Tian, J. Kang, R. Chia, H. Chang, Y. Bai, C. Xu, X. Wang, Q. Liu, ACS Sensors, 5 , 1777–1785 (2020).
15. X. Sun, Anal. Chim. Acta, 1206 , 339226 (2022).
16. Y. Kang, X. Xue, W. Wang, Y. Fan, W. Li, T. Ma, F. Zhao, Z. Zhang, J. Phys. Chem. C, 124 , 21054–21062 (2020).
17. Y. Huang, Y. Luo, H. Liu, X. Lu, J. Zhao, Y. Lei, Eng. Sci., 14 , 59–68 (2020).
18. I. Al-Ogaidi, H. Gou, A. K. A. Al-kazaz, Z. P. Aguilar, A. K. Melconian, P. Zheng, N. Wu, Anal. Chim. Acta, 811 , 76–80 (2014).
19. S. K. Deb, B. Davis, G. M. Knudsen, R. Gudihal, D. Ben-Amotz, V. J. Davisson, J. Am. Chem. Soc., 130 , 9624–9625 (2008).
20. Z. Yu, Y. Park, L. Chen, B. Zhao, Y. M. Jung, Q. Cong, ACS Appl. Mater. Inter., 7 , 23472–23480 (2015).
21. Y. Chen, Z.-P. Chen, S.-Y. Long, R.-Q. Yu, Anal. Chem., 86 , 12236–12242 (2014).
22. J.-W. Jin, Z.-P. Chen, L.-M. Li, R. Steponavicius, S. N. Thennadil, J. Yang, R.-Q. Yu, Anal. Chem., 84 , 320–326 (2012).
23. R. J. Yu, J. J. Sun, H. Song, J. Z. Tian, D. W. Li, Y. T. Long, Sensors, 17 , 530 (2017).
24. Z. Yu, Y. Park, L. Chen, B. Zhao, Y. M. Jung, Q. Cong, ACS Appl. Mater. Interfaces, 7 , 23472–23480 (2015).
25. R. Boqué, J. Ferré, N. K. M. Faber, F. X. Rius, Anal. Chim. Acta, 451 , 313–321 (2002).
26. A. Lorber, Anal. Chem., 58 , 1167–1172 (1986).
27. Y. K. Gao, C. M. Zhang, Y. X. Yang, N. Yang, S. C. Lu, T. T. You, P. G. Yin, J. Alloys Compd., 863 , 158758 (2021).
Review
For citations:
Tang Y., Zhang S., Wang Q., Han J., Chao L., Nie L., Chen Y., Wang T. An Advanced Chemometric Model Applied to Ratiometric Surface-Enhanced Raman Scattering for Monitoring Blood Glucose. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):609.