Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

PVC-Based Ultraviolet Screening Films Modified by Chitosan Capped ZnO-Hydroxyapatite

Abstract

Exploring new material structures of low photocatalytic degradation activity for ultraviolet screening is one of the important methods for improving polyvinylchloride (PVC) performance. As an important kind of ultraviolet (UV) shielding agent material, nano zinc oxide (ZnO) has been applied extensively in many fields due to its outstanding properties. However, the severe aggregation behavior between nanoparticles (NPs) and photocatalytic activity greatly limits the application. In this work, surface modification of ZnO with hydroxyapatite and chitosan (ZnO-Hap/CS) was fabricated. Then via a solution casting technique dispersed within the PVC matrix. The results demonstrated that the obtained composite exhibited the best ultraviolet screening performance greatly decreasing the photocatalytic degradation activity of ZnO. It is expected that this approach is prospective for the large-scale preparation of nano ZnO with excellent UV-blocking performance and low photocatalytic degradation activity.

About the Authors

B. Wang
School of Chemical and Blasting Engineering, Anhui University of Science and Technology
China

Bin Wang

Huainan



X. Zhang
School of Chemical and Blasting Engineering, Anhui University of Science and Technology
China

Xiao Zhang

Huainan



X. Ma
School of Chemical and Blasting Engineering, Anhui University of Science and Technology
China

Xiangmei Ma

Huainan



References

1. K. B. Barun, S. H. Ørjan, H. Ayako, N. Tadaaki, ACS Sustain. Chem. Eng., 9, 9879–9890 (2021), https://doi.org/10.1021/acssuschemeng.1c02791.

2. Samira Maou, Ahmed Meghezzi, Yves Grohens, Yazid Meftah, Antoine Kervoelen, Anthony Magueresse, Ind. Crops & Products, 171, 113974–113985 (2021), https://doi.org/10.1016/j.indcrop.2021.113974.

3. Orli Weizman, A. Uziel, Joey Mead, Hanna Dodiuk, Amos Ophir, Shmeul Kenig, Polym. Adv. Technol., 33, 3411–3417 (2022), https://doi.org/10.1002/pat.5791.

4. Anname Lourens, Anzel Falch, Daniel Otto, Rehana Malgas-Enus, Inorg. Chem. Commun., 142, 109586–109598 (2022), https://doi.org/10.1016/j.inoche.2022.109586.

5. T. Jiang, Z. Mao, Y Qi, Y. Wu, J. Zhang, Polym. Adv. Technol., 32, 4915–4925 (2021), https://doi.org/10.1002/pat.5486.

6. P. Li, W. Guo, Z. Lu, J. Tian, X. Li, H. Wang, Progress in Organic Coatings, 151, 106046–116053 (2021), https://doi.org/10.1016/j.porgcoat.2020.106046.

7. M. W. Aladailah, O. L. Tashlykov, T. P. Volozheninov, D. O. Kaskov, K. S. Iuzbashieva, Rama Al-Abed, Abuzer Acikgoz, Nuri Yorulmaz, Mehmet Murat Yaşar, Walaa Al-Tamimi, Marwan Alshipli, Opt. Mater., 134, 113197–113206 (2022), https://doi.org/10.1016/j.optmat.2022.113197.

8. Q. Yang, L. Zhao, H. Yu, Q. Min, C. Chen, D. Zhou, X. Yu, J. Qiu, B. Li, X. Xu, J. Alloys and Compounds, 784, 535–540 (2019), https://doi.org/10.1016/j.jallcom.2019.01.078.

9. Y. Zhang, X. Wang, Y. X. Liu, S. Y. Song, D. P. Liu, J. Mater. Chem., 22, 11971–11977 (2022), https://doi.org/10.1039/c2jm30672g.

10. X. Chen, D. Hu, Z. Zhang, W. Ma, J. Alloys and Compd., 811, 151986 (2019), https://doi.org/10.1016/j.jallcom.2019.151986.

11. D. M. Fernandes, A. A. W. Hechenleitner, S. M. Lima, L. H. Andrade, A. R. L. Caires, E. A. Pineda Gómez, Mater. Chem. and Phys., 128, 371–376 (2021), https://doi.org/10.1016/j.matchemphys.2011.03.002.

12. Y. Tu, L. Zhou, Y. Z. Jin, C. Gao, Z. Z. Ye, Y. F. Yang, Q. L. Wang, J. Mater. Chem., 20, 1594–1599 (2020), https://doi.org/10.1039/b914156a.

13. H. T. Liu, X. F. Zeng, H. Zhao, J. F. Chen, Ind. Eng. Chem. Res., 51, 6753–6759 (2012), https://doi.org/10.1021/ie300425v

14. M. Rashvand, Z. Ranjbar, S. Rastegar, Progress in Organic Coatings, 71, 362–368 (2011), https://doi.org/10.1016/j.porgcoat.2011.04.006.

15. D. Kim, K. Jeon, Y. Lee, J. Deo, K. Seo, H. Han, S. B. Khan, Progress in Organic Coatings, 74, 435–442 (2012), https://doi.org/10.1016/j.porgcoat.2012.01.007.

16. J. Anita Lett, Suresh Sagadevan, Is Fatimah, Md Enamul Hoque, Yogeswaran Lokanathan, Estelle Léonard, Solhe F. Alshahateet, Romana Schirhagl, Won Chun Oh, Eur. Polymer J., 148, 110360–110377 (2021), https://doi.org/10.1016/j.eurpolymj.2021.110360.

17. J. V. Luis, P. Jordi, Encyclopedia of Materials Composites, 1, 785–803 (2021), https://doi.org/10.1016/B978-0-12-819724-0.00054-9.

18. S. P. Mondéjar, A. Kovtun, M. Epple, J. Mater. Chem., 17, 4153–4159 (2007), https://doi.org/10.1039/B708258D.

19. L. Li, Y. Liu, J. Tao, M. Zhang, H. Pan, X. Xu, R. Tang, J. Phys. Chem. C, 112, 12219–12224 (2008), https://doi.org/10.1021/jp8026463.

20. H. Liu, F. Chen, P. Xi, B. Chen, L. Huang, J. Cheng, C. Shao, J. Wang, D. Bai, Z. Zeng, Imaging Appl., 115, 18538–18544 (2011), https://doi.org/10.1021/jp206843w.

21. C. Zhang, J. Yang, Z. Quan, P. Yang, C. Li, Z. Hou, J. Lin, Cryst. Growth Des., 9, 2725–2733 (2009), https://doi.org/10.1021/cg801353n.

22. Akemi Yasukawa, Junna Tamura, Colloids and Surfaces A, 609, 125705 (2021), https://doi.org/10.1016/j.colsurfa.2020.125705.

23. X. Li, X. Duan, S. Chen, H. Chen, Mater. Lett., 327, 133034 (2022), https://doi.org/10.1016/j.matlet.2022.133034.

24. X. Ma, Z. Dong, B. Wang, L. Liu, R. Ye, Turk. J. Chem., 46, 542–549 (2022), https://doi.org/10.3906/kim-2110-13

25. B. Wang, F. Jiang, X. Ma, Z. Dong, Y. Liu, Colloid and Polymer Sci., 300, 51–57 (2022), https://doi.org/10.1007/s00396-021-04929-z.

26. L. Zhang, C. Gao, Z. Wang, F. Xie, Y. Chen, L. Meng, X. Tang, ACS Sustainable Chem. Eng., 11, 708–717 (2023), https://doi.org/10.1021/acssuschemeng.2c05843.

27. Ali Gharieh, Amin Abdollahi, Laleh Sohrabi, Polym. Adv. Technol., 34, 646–654 (2023), https://doi.org/10.1002/pat.5917.

28. R. Nishant, Materials Today: Proceedings. Available online 28 May, 2021. https://doi.org/10.1016/j.matpr.2021.04.274.

29. Rosa Taurino, Corrado Sciancalepore, Luca Collini, Moreno Bondi, Federica Bondioli, Composites Part B: Eng., 149, 240–247 (2018), https://doi.org/10.1016/j.compositesb.2018.05.021.

30. Ori Geuli, Israel Lewinstein, Daniel Mandler, ACS Appl. Nano Mater., Publication Date (Web): 22 Apr. 2019, https://doi.org/10.1021/acsanm.9b00369.

31. Ariel Nenen, Miguel Maureira, Miguel Neira, Sandra L. Orellana, Cristian Covarrubias, Ignacio Moreno-Villoslada, Ceram. Int., 48, 34750–34759 (2022), https://doi.org/10.1016/j.ceramint.2022.08.064.

32. K. Du, X. Liu, S. Li, L. Qiao, H. Ai, ACS Sustain. Chem. Eng., Publication Date (Web): 13 Aug 2018 (2018), https://doi.org/10.1021/acssuschemeng.

33. Kashif Rasool, Gheyath K. Nasrallah, Nadin Younes, Ravi P. Pandey, P. Abdul Rasheed, Khaled A. Mahmoud, ACS Sustain. Chem. Eng., 6, 3896–3916 (2018), https://doi.org/10.1021/acssuschemeng.7b04248.

34. M. A. Malimabe, B. F. Dejene, H. C. Swart, S. V. Motloung, L. F. Koao, J. Mol. Struct., 1202, 127339–127396 (2020), https://doi.org/10.1021/acssuschemeng.7b04248.

35. W Li, J Liu, B Liang, Y Shu, J. Wang, Composites Part B, 204, 108492(1–8) (2021), https://doi.org/10.1016/j.compositesb.2020.108492.

36. Y. Cao, P. Xu, P. Lv, P. J. Lemstra, X. Cai, W. Yang, W. Dong, M. Chen, T. Liu, M. Du, P. Ma, ACS Appl. Mater. Interfaces, 12, 49090–49100 (2020), https://doi.org/10.1021/acsami.0c1442.

37. Y. Wang, T. Li, P. Ma, H. Bai, M. Chen, Y. Xie, W. Dong, ACS Sustain. Chem. Eng., 4, 2252–2258 (2016), https://doi.org/10.1021/acssuschemeng.5b01734.

38. Antonio Greco, Francesca Ferrari, Alfonso Maffezzoli, J. Cleaner Prod., 164, 757–764 (2017), https://doi.org/10.1016/j.jclepro.2017.07.009.


Review

For citations:


Wang B., Zhang X., Ma X. PVC-Based Ultraviolet Screening Films Modified by Chitosan Capped ZnO-Hydroxyapatite. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):612.

Views: 215


ISSN 0514-7506 (Print)