Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

A New Type of Composite Catalyst α-nBACoPc/SnO2 Synergistic Photo-Catalytic Degradation of Dyes

Abstract

The α-nBACoPc/SnO2 composites were prepared using the in situ synthesis method and characterized by Fourier transform infrared (FT-IR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and confirmed by the loading of amino cobalt phthalocyanine on SnO2. Conduct photocatalytic degradation experiments used rhodamine B as a simulated pollutant. The composite exhibited a photo-catalytic degradation rate of 83.3%, which was higher than that of α-nBACoPc and SnO2 alone. The Co-O bond in the composite material enhances the transfer of electrons from phthalocyanine to the SnO2 conduction band, improving light utilization and strengthening the synergistic impact of cobalt phthalocyanine and SnO2. Furthermore, the composites demonstrated good stability and recyclability.

About the Authors

Y. Yin
Technology Innovation Center of Industrial Hemp for State Market Regulation
China

Yanbing Yin 

Qiqihar, Heilongjiang



B. Jiang
Technology Innovation Center of Industrial Hemp for State Market Regulation
China

Bei Jiang

Qiqihar, Heilongjiang



G. Xu
Technology Innovation Center of Industrial Hemp for State Market Regulation
China

Guopeng Xu

Qiqihar, Heilongjiang



Y. Liu
Technology Innovation Center of Industrial Hemp for State Market Regulation
China

Yang Liu

Qiqihar, Heilongjiang



Z. Wang
Technology Innovation Center of Industrial Hemp for State Market Regulation
China

Zhou Wang

Qiqihar, Heilongjiang



Y. Feng
Technology Innovation Center of Industrial Hemp for State Market Regulation
China

Yongming Feng

Qiqihar, Heilongjiang



X. Sun
Technology Innovation Center of Industrial Hemp for State Market Regulation
China

Xinyu Sun

Qiqihar, Heilongjiang



References

1. V. S. Suvith, V. S. Devu, D. Philip, Ceram. Int., 46, No. 1, 786–794 (2020), https://doi.org/10.1016/j.ceramint.2019.09.033.

2. S. A. Aladejare, Res. Policy, 78, 102909 (2022), https://doi.org/10.1016/j.resourpol.2022.102909.

3. Y. Fu, J. Li, Nanomaterials, 9, No. 3, 359 (2019), https://doi.org/10.3390/nano9030359.

4. M. Y. Xie, K. Y. Su, X. Y. Peng, et al., J. Taiwan Institute of Chemical Engineers, 70, 161–167 (2017), https://doi.org/10.1016/j.jtice.2016.10.034.

5. T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev., 116, 5987–6041 (2016), https://doi.org/10.1021/acs.chemrev.5b00603.

6. J. Li, N. Wu, Catal. Sci. Technol., 5, 1360–1384 (2015), https://doi.org/10.1039/C4CY00974F.

7. S.-M. Lam, J.-C. Sin, A. R. Mohamed, Mater. Sci. Semicond. Process, 47, 62–84 (2016), https://doi.org/10.1016/j.mssp.2016.02.019.

8. W. Jin, H. Wang, Y. Liu, S. Yang, J. Zhou, W. Chen, ACS Appl. Nano Mater., 5, 10485–10494 (2022), https://doi.org/10.1021/acsanm.2c01819.

9. T. A. Dontsova, A. S. Kutuzova, K. O. Bila, et al., J. Nanomaterials, 8349480 (2020), https://doi.org/10.1155/2020/8349480.

10. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, et al., J. Mater. Sci.: Mater. Electron., 25, No. 2, 730–735 (2014), https://doi.org/10.1007/s10854-013-1637-9.

11. A. E. Shalan, I. Osama, M. M. Rashad, et al., J. Mater. Sci.: Mater. Electron., 25, No. 1, 303–310 (2014), https://doi.org/10.1007/s10854-013-1586-3.

12. G. Mendoza-Damián, F. Tzompantzi, R. Pérez-Hernández, et al., Catalysis Today, 266, 82–89 (2016). https://doi.org/10.1016/j.cattod.2015.11.029.

13. S. A. Ansari, M. M. Khan, M. O. Ansari, et al., New J. Chem., 38, No. 6, 2462–2469 (2014), https://doi.org/10.1039/C3NJ01488F.

14. Z. He, J. Zhou, Mod. Res. Catalysis, 2, 13–18 (2013), http://dx.doi.org/10.4236/mrc.2013.23A003.

15. A. Kar, J. Olszówka, S. Sain, et al., J. Alloys and Compd., 810, 151718 (2019).

16. Y. Liu, D. Pan, M. Xiong, et al., Chin. J. Catalysis, 41, No. 10, 1554–1563 (2020).

17. S. Gorduk, J. Mol. Struct., 1198, 126921 (2019), https://doi.org/10.1016/j.molstruc.2019.126921.

18. M. A. Deyab, G. Mele, J. Power Sources, 443, 227264 (2019), https://doi.org/10.1016/j.jpowsour.2019.227264.

19. X. Li, T. Zhang, Y. Chen, Y. Fu, J. Su, L. Guo, Chem. Eng. J., 382, 122783 (2019), https://doi.org/10.1016/j.cej.2019.122783.

20. S. Moradian, H. Dezhampanah, J. B. Ghasemi, H. Behnejad, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 227, 117621 (2020), https://doi.org/10.1016/j.saa.2019.117621.

21. H. Yakan, M. S. Çavuş, E. Güzel, et al., J. Mol. Struct., 1202, 127259 (2020), https://doi.org/10.1016/j.molstruc.2019.127259.

22. E Boutin, M Wang, J C Lin, et al., Angew. Chem. Int. Ed., 58, No. 45, 16172–16176 (2019), https://doi.org/10.1002/anie.201909257.

23. M. Wang, K. Torbensen, D. Salvatore, et al., Nature Commun., 10, No. 1, 1–8 (2019), https://doi.org/10.1038/s41467-019-11542-w.

24. E. T. Saka, E. Dügdü, Y. Ünver, J. Coord. Chem., 72, No. 5-7, 1119–1130 (2019), https://doi.org/10.1080/00958972.2019.1589461.

25. L. A. Leal, W. F. da Cunha, L. A. Ribeiro Jr, et al., J. Mol. Modeling, 23, No. 5, 1–6 (2017), https://doi.org/10.1007/s00894-017-3338-4.

26. B. Mecheri, A. Ficca, M. Oliveira, et al., Appl. Catalysis B: Environ., 237, No. 5, 699–707 (2018), https://doi.org/10.1016/j.apcatb.2018.06.031.

27. H. Ahn, Y. C. Huang, C. W. Lin, et al., ACS Appl. Mater. Interfaces, 10, No. 34, 29145–29152 (2018), https://doi.org/10.1021/acsami.8b09378.

28. A. Atxabal, M. Ribeiro, S. Parui, et al., Nature Comm., 7, No. 1, 1–7 (2016), https://doi.org/10.1038/ncomms13751.

29. R. Milan, G. Singh Selopal, M. Cavazzini, et al., Sci. Rep., 10, No. 1, 1–9 (2020), https://doi.org/10.1038/s41598-020-58310-1.

30. N. K. Subbaiyan, F. D'Souza, Chem. Commun., 48, No. 30, 3641–3643 (2012), https://doi.org/10.1039/C2CC30614J.

31. H. Ghafuri, F. Mohammadi, R. Rahimi, et al., RSC Adv., 87, No. 6, 83947–83953 (2016), https://doi.org/10.1039/C6RA17712C.

32. G. Zhang, J. Ren, B. Liu, et al., Inorg. Chim. Acta, 471, 782–787 (2018), https://doi.org/10.1016/j.ica.2017.12.025.

33. Y. Yin, G. Xu, Z. Xin, et al., J. Coord. Chem., 75, No. 3-4, 535–547 (2022), https://doi.org/10.1080/00958972.2022.2058396.

34. J. Fang, H. Mao, J. Wu, et al., Appl. Surface Sci., 119, No. 3-4, 237–241 (1997), https://doi.org/10.1016/S0169-4332(97)00195-5.

35. H. Imahori, T. Umeyama, S. Ito, Acc. Chem. Res., 42, No. 11, 1809–1818 (2009), https://doi.org/10.1021/ar900034t.


Review

For citations:


Yin Y., Jiang B., Xu G., Liu Y., Wang Z., Feng Y., Sun X. A New Type of Composite Catalyst α-nBACoPc/SnO2 Synergistic Photo-Catalytic Degradation of Dyes. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):615.

Views: 176


ISSN 0514-7506 (Print)