Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Portable Stand-Off Time-Gated Raman for Detection of Explosive Precursor

Abstract

Remote detection of trace explosives and hazardous chemicals has been an ongoing challenge and a critical issue in defense science, public safety, and counterterrorism. Raman spectroscopy, a form of inelastic scattering, acts as a “fingerprint” analysis method for substance identification with high confidence in the detection of chemicals based on their vibrational modes. Here, we present a portable stand-off timegated Raman spectroscopy, which consists of a passive Q-switched pulsed laser, a designed gated ICMOS, a spectrometer, and a telescope, with an overall size of 476.5×321.5×219.3 mm and a weight of 23.2 kg, which is much more compact and portable than reported previously. To confirm the effectiveness of the designed portable time-gated Raman spectroscopy, detections at different working distances and various amounts of substances are carried out. High levels of Raman identification are acquired even for 0.1 mg at a 10 m distance. Furthermore, we simulate realistic encounters in a possible war-zone scenario by testing the system’s ability to recognize urea samples on different substrates such as an aluminum plate, woodblock, cardboard, black cloth, and leaf; good characteristic recognition is shown.

About the Authors

W. Ren
State Key Laboratory of Transient Optics and Photonics; Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences
China

Wenzhen Ren  

Xi’an



H. Wang
Science and Technology on Near-Surface Detection Laboratory; The First Scientific Research Institute of Wuxi; University of Chinese Academy of Sciences
China

Hui Wang  

Wuxi; Shijingshan District, Beijing



Z. Xie
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences
China

Zhengmao Xie  

Xi’an



X. P. Zhu
State Key Laboratory of Transient Optics and Photonics; Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Key & Core Technology Innovation Institute of the Greater Bay Area
China

Xiang Ping Zhu  

Xi’an; Shijingshan District, Beijing; Guangzhou, Guangdong



P. Zhang
State Key Laboratory of Transient Optics and Photonics; Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Key & Core Technology Innovation Institute of the Greater Bay Area
China

Pu Zhang  

Xi’an; Shijingshan District, Beijing; Guangzhou, Guangdong



B. Wang
State Key Laboratory of Transient Optics and Photonics; Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
China

Bo Wang  

Xi’an; Shijingshan District, Beijing



C. Huang
State Key Laboratory of Transient Optics and Photonics; Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
China

Cheng Huang  

Xi’an; Shijingshan District, Beijing



D. Xu
The First Scientific Research Institute of Wuxi
China

Dan Dan Xu  

Wuxi



W. Zhao
State Key Laboratory of Transient Optics and Photonics; Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Key & Core Technology Innovation Institute of the Greater Bay Area
China

Wei Zhao 

Xi’an; Shijingshan District, Beijing; Guangzhou, Guangdong



References

1. S. Chaudhary, S. Ninsawat, T. Nakamura, Sensors, 19 (2019).

2. S. Almaviva, F. Angelini, R. Chirico, A. Palucci, M. Nuvoli, F. Schnuerer, W. Schweikert, F. S. Romolo, Optics and Photonics for Counterterrorism, Crime Fighting, and Defence X; and Optical Materials and Biomaterials in Security and Defence Systems Technology Xi 9253 (2014).

3. V. S. Dhanada, S. D. George, V. B. Kartha, S. Chidangil, V. K. Unnikrishnan, Appl. Spectrosc. Rev., 56, 463–491 (2021).

4. A. K. Misra, T. E. Acosta-Maeda, J. N. Porter, G. Berlanga, D. Muchow, S. K. Sharma, B. Chee, Appl. Spectrosc., 73, 320–328 (2019).

5. K. M. M. Shameem, V. S. Dhanada, S. Harikrishnan, S. D. George, V. B. Kartha, C. Santhosh, V. K. Unnikrishnan, Talanta, 208 (2020).

6. W. Zhang, Y. Tang, A. Shi, L. Bao, Y. Shen, R. Shen, Y. Ye, Materials, 11 (2018).

7. M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M.-C. Guiot, K. Petrecca, F. Leblond, Sci. Trans. Med., 7 (2015).

8. H. Lui, J. Zhao, D. McLean, H. Zeng, Cancer Res., 72, 2491–2500 (2012).

9. B. S. Leigh, K. L. Monson, J. E. Kim, Forens. Chem., 2, 22–28 (2016).

10. J. Blacksberg, E. Alerstam, Y. Maruyama, C. J. Cochrane, G. R. Rossman, Appl. Opt., 55, 739–748 (2016).

11. M. Kogler, B. Heilala, Meas. Sci. Technol., 32 (2021).

12. J. Xia, Q. Yao, L. Zhu, M. Dong, X. Lou, Vib. Spectrosc., 102, 16–23 (2019).

13. M. Gaft, L. Nagli, Opt. Mater., 30, 1739–1746 (2008).

14. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, J. G. Reynolds, Appl. Spectrosc., 59, 769–775 (2005).

15. T. E. Acosta-Maeda, A. K. Misra, L. G. Muzangwa, G. Berlanga, D. Muchow, J. Porter, S. K. Sharma, Appl. Opt., 55, 10283–10289 (2016).

16. J. H. Chung, S. G. Cho, Bull. Korean Chem. Soc., 35, 3547–3552 (2014).

17. L. M. L. Cantu, E. C. A. Gallo, Eur. Phys. J. Plus, 137, 207 (2022).

18. R. Chirico, S. Almaviva, F. Colao, L. Fiorani, M. Nuvoli, W. Schweikert, F. Schnuerer, L. Cassioli, S. Grossi, D. Murra, I. Menicucci, F. Angelini, A. Palucci, Sensors, 16 (2016).

19. J. A. Carroll, E. L. Izake, B. Cletus, E. Jaatinen, J. Raman Spectrosc., 46, 333–338 (2015).

20. K. L. Gares, K. T. Hufziger, S. V. Bykov, S. A. Asher, J. Raman Spectrosc., 47, 124–141 (2016).

21. E. Schmaelzlin, B. Moralejo, M. Rutowska, A. Monreal-Ibero, C. Sandin, N. Tarcea, J. Popp, M. M. Roth, Sensors, 14, 21968–21980 (2014).

22. E. Gallo, L. Cantu, F. Duschek, Opt. Eng., 60 (2021).

23. J. H. Odhner, D. A. Romanov, R. J. Levis, Conference on Nonlinear Frequency Generation and Conversion – Materials, Devices, and Applications IX, San Francisco, CA (2010).


Review

For citations:


Ren W., Wang H., Xie Z., Zhu X.P., Zhang P., Wang B., Huang C., Xu D., Zhao W. Portable Stand-Off Time-Gated Raman for Detection of Explosive Precursor. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):616.

Views: 179


ISSN 0514-7506 (Print)