Portable Stand-Off Time-Gated Raman for Detection of Explosive Precursor
Abstract
Remote detection of trace explosives and hazardous chemicals has been an ongoing challenge and a critical issue in defense science, public safety, and counterterrorism. Raman spectroscopy, a form of inelastic scattering, acts as a “fingerprint” analysis method for substance identification with high confidence in the detection of chemicals based on their vibrational modes. Here, we present a portable stand-off timegated Raman spectroscopy, which consists of a passive Q-switched pulsed laser, a designed gated ICMOS, a spectrometer, and a telescope, with an overall size of 476.5×321.5×219.3 mm and a weight of 23.2 kg, which is much more compact and portable than reported previously. To confirm the effectiveness of the designed portable time-gated Raman spectroscopy, detections at different working distances and various amounts of substances are carried out. High levels of Raman identification are acquired even for 0.1 mg at a 10 m distance. Furthermore, we simulate realistic encounters in a possible war-zone scenario by testing the system’s ability to recognize urea samples on different substrates such as an aluminum plate, woodblock, cardboard, black cloth, and leaf; good characteristic recognition is shown.
About the Authors
W. RenChina
Wenzhen Ren
Xi’an
H. Wang
China
Hui Wang
Wuxi; Shijingshan District, Beijing
Z. Xie
China
Zhengmao Xie
Xi’an
X. P. Zhu
China
Xiang Ping Zhu
Xi’an; Shijingshan District, Beijing; Guangzhou, Guangdong
P. Zhang
China
Pu Zhang
Xi’an; Shijingshan District, Beijing; Guangzhou, Guangdong
B. Wang
China
Bo Wang
Xi’an; Shijingshan District, Beijing
C. Huang
China
Cheng Huang
Xi’an; Shijingshan District, Beijing
D. Xu
China
Dan Dan Xu
Wuxi
W. Zhao
China
Wei Zhao
Xi’an; Shijingshan District, Beijing; Guangzhou, Guangdong
References
1. S. Chaudhary, S. Ninsawat, T. Nakamura, Sensors, 19 (2019).
2. S. Almaviva, F. Angelini, R. Chirico, A. Palucci, M. Nuvoli, F. Schnuerer, W. Schweikert, F. S. Romolo, Optics and Photonics for Counterterrorism, Crime Fighting, and Defence X; and Optical Materials and Biomaterials in Security and Defence Systems Technology Xi 9253 (2014).
3. V. S. Dhanada, S. D. George, V. B. Kartha, S. Chidangil, V. K. Unnikrishnan, Appl. Spectrosc. Rev., 56, 463–491 (2021).
4. A. K. Misra, T. E. Acosta-Maeda, J. N. Porter, G. Berlanga, D. Muchow, S. K. Sharma, B. Chee, Appl. Spectrosc., 73, 320–328 (2019).
5. K. M. M. Shameem, V. S. Dhanada, S. Harikrishnan, S. D. George, V. B. Kartha, C. Santhosh, V. K. Unnikrishnan, Talanta, 208 (2020).
6. W. Zhang, Y. Tang, A. Shi, L. Bao, Y. Shen, R. Shen, Y. Ye, Materials, 11 (2018).
7. M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M.-C. Guiot, K. Petrecca, F. Leblond, Sci. Trans. Med., 7 (2015).
8. H. Lui, J. Zhao, D. McLean, H. Zeng, Cancer Res., 72, 2491–2500 (2012).
9. B. S. Leigh, K. L. Monson, J. E. Kim, Forens. Chem., 2, 22–28 (2016).
10. J. Blacksberg, E. Alerstam, Y. Maruyama, C. J. Cochrane, G. R. Rossman, Appl. Opt., 55, 739–748 (2016).
11. M. Kogler, B. Heilala, Meas. Sci. Technol., 32 (2021).
12. J. Xia, Q. Yao, L. Zhu, M. Dong, X. Lou, Vib. Spectrosc., 102, 16–23 (2019).
13. M. Gaft, L. Nagli, Opt. Mater., 30, 1739–1746 (2008).
14. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, J. G. Reynolds, Appl. Spectrosc., 59, 769–775 (2005).
15. T. E. Acosta-Maeda, A. K. Misra, L. G. Muzangwa, G. Berlanga, D. Muchow, J. Porter, S. K. Sharma, Appl. Opt., 55, 10283–10289 (2016).
16. J. H. Chung, S. G. Cho, Bull. Korean Chem. Soc., 35, 3547–3552 (2014).
17. L. M. L. Cantu, E. C. A. Gallo, Eur. Phys. J. Plus, 137, 207 (2022).
18. R. Chirico, S. Almaviva, F. Colao, L. Fiorani, M. Nuvoli, W. Schweikert, F. Schnuerer, L. Cassioli, S. Grossi, D. Murra, I. Menicucci, F. Angelini, A. Palucci, Sensors, 16 (2016).
19. J. A. Carroll, E. L. Izake, B. Cletus, E. Jaatinen, J. Raman Spectrosc., 46, 333–338 (2015).
20. K. L. Gares, K. T. Hufziger, S. V. Bykov, S. A. Asher, J. Raman Spectrosc., 47, 124–141 (2016).
21. E. Schmaelzlin, B. Moralejo, M. Rutowska, A. Monreal-Ibero, C. Sandin, N. Tarcea, J. Popp, M. M. Roth, Sensors, 14, 21968–21980 (2014).
22. E. Gallo, L. Cantu, F. Duschek, Opt. Eng., 60 (2021).
23. J. H. Odhner, D. A. Romanov, R. J. Levis, Conference on Nonlinear Frequency Generation and Conversion – Materials, Devices, and Applications IX, San Francisco, CA (2010).
Review
For citations:
Ren W., Wang H., Xie Z., Zhu X.P., Zhang P., Wang B., Huang C., Xu D., Zhao W. Portable Stand-Off Time-Gated Raman for Detection of Explosive Precursor. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):616.