Application of Magnetically Induced Atomic Transitions Fg = 3→Fe = 1 of Rubidium D2-Lines in Magnetic Fields
Abstract
Magnetically induced (MI) transitions of 85Rb atoms, D2 lines 5S1/2–5P3/2, Fg=3→Fe=1 with circular polarization σ, the intensities of which are zero in a zero magnetic field, have been studied experimentally and theoretically, but in magnetic fields at 0.5–1 kG, the intensities of the transitions noted above increase significantly. To implement the process of electromagnetic-induced transparency (EIT) in a strong magnetic field of ~1 kG MI, the Fg=3→Fe=1 transition was used for the first time at the probe radiation frequency, the frequency of the coupling radiation is resonant with the Fg=2→Fе=1 transition. The generated EIT resonance is located on the low-frequency wing of the spectrum. It is shown that EIT resonance is formed only when the probe and coupling radiations have the same circular polarization σ. This is true for all cases when MI transitions Fе – Fg = ΔF = –2 are used.
About the Authors
A. SargsyanArmenia
Ashtarak
A. Tonoyan
Armenia
Ashtarak
D. Sarkisyan
Armenia
Ashtarak
References
1. J. Kitching. Appl. Phys. Rev., 5 (2018) 031302
2. J. Keaveney, C. S. Adams, I. G. Hughes. Comp. Phys. Commun., 224 (2018) 311
3. D. Pizzey, J. Briscoe, F. Logue, F. Ponciano-Ojeda, S. Wrathmall, I. G. Hughes. New J. Phys., 24 (2022) 125001
4. R. Finkelstein, S. Bali, O. Firstenberg, I. Novikova. New J. Phys., 25 (2023) 03500
5. P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, N. Cyr. Phys. Rev. A, 42 (1990) 2766—2773
6. A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, D. Sarkisyan. Laser Phys. Lett., 11 (2014) 055701
7. S. Scotto, D. Ciampini, C. Rizzo, E. Arimondo. Phys. Rev., 92 (2015) 063810
8. A. Sargsyan, A. Tonoyan, R. Momier, C. Leroy, D. Sarkisyan. J. Opt. Soc. Am. B, 39 (2022) 973—978
9. A. Sargsyan, A. Tonoyan, G. Hakhumyan, D. Sarkisyan. Optics and Its Applications, Springer Proceedings in Physics, 281, 155—165 (2022), doi: 10.1007/978-3-031-11287-4_13
10. H. Starkind, K. Jensen, J. H. Muller, V. O. Boer, E. T. Petersen, E. S. Polzik. Phys. Rev. X, 13 (2023) 021036
11. A. Tonoyan, A. Sargsyan, E. Klinger, G. Hakhumyan, C. Leroy, M. Auzinsh, A. Papoyan, D. Sarkisyan. EuroPhys. Lett., 121 (2018) 53001
12. А. Саргсян, Э. Клингер, К. Леруа, Т. А. Вартанян, Д. Саркисян. Опт. и спектр., 127 (2019) 389—395
13. A. Sargsyan, A. Amiryan, A. Tonoyan, E. Klinger, D. Sarkisyan. Phys. Lett. A, 390 (2021) 127114
14. A. Sargsyan, A. Tonoyan, A. Papoyan, D. Sarkisyan. Opt. Lett., 44 (2019) 1391—1394
15. А. Саргсян, А. Тоноян, Д. Саркисян. ЖЭТФ (JETP), 160 (2021) 24
16. A. Sargsyan, A. Amiryan, A. Tonoyan, E. Klinger, D. Sarkisyan. Phys. Lett. A, 434 (2022) 128043
17. A. Sargsyan, A. Tonoyan, D. Sarkisyan. Opt. Commun., 537 (2023) 129464
18. A. Sargsyan, A. Tonoyan, R. Momier, C. Leroy, D. Sarkisyan. J. Quant. Spectr. and Rad. Transfer, 303 (2023) 108582
19. B. A. Olsen, B. Patton, Y. Y. Jau, W. Happer. Phys. Rev. A, 84 (2011) 063410
20. M. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, I. G. Hughes. Comp. Phys. Commun., 189 (2015) 162
21. M. Fleischhauer, A. Imamoglu, J. P. Marangos. Rev. Modern Phys., 77 (2005) 633—673
22. V. V. Vassiliev, S. A. Zibrov, V. L. Velichansky. Rev. Sci. Instrum., 77 (2006) 013102
23. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan. Opt. Lett., 37 (2012) 1379
24. E. Gazazyan, A. Papoyan, D. Sarkisyan, A. Weis. Laser Phys. Lett., 4 (2007) 801
25. W. Happer. Rev. Modern Phys., 44 (1972) 169
26. А. Саргсян. Журн. прикл. спектр., 90 (2023) 535—540 [A. Sargsyan. J. Appl. Spectr., 90 (2023) 731—735]
Review
For citations:
Sargsyan A., Tonoyan A., Sarkisyan D. Application of Magnetically Induced Atomic Transitions Fg = 3→Fe = 1 of Rubidium D2-Lines in Magnetic Fields. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):640-646. (In Russ.)