Hydroxyapatite Modified with Silver Nanoparticles for Registration of SERS Spectra of Differently Charged Analytes
Abstract
We have functionalized the surface of hydroxyapatite (HA) particles with silver nanoparticles by reducing silver nitrate in the presence of glucose or hydrazine hydrochloride. Two types of (HA)Ag nanocomposite presumably possessing the excess of negative and positive charge (HA)Ag-I and (HA)Ag-II, respectively, were obtained. Plasmonic coatings of (HA)Ag-I and (HA)Ag-II nanoparticles were formed on the surface of glass substrates using the droplet deposition method, and their structural and spectral properties were studied. A comparative study of the intensity of surface-enhanced Raman scattering (SERS) spectra of cationic and anionic porphyrins CuTMpyP4 and CuTPPS4, as well as rhodamine 6G, adsorbed on the surface of both types of nanocomposites was carried out. It has been established that plasmonic structures (HA)Ag-I provide the greatest enhancement of the SERS signal for the cationic porphyrin CuTMpyP4, while for the anionic porphyrin CuTPPS4 adsorbed on films of the (HA)Ag-II composite, a high spectral intensity is observed, which is almost forty times of magnitude higher than in the case of (HA)Ag-I. For Rh6G molecules with charge +1, the efficiency of SERS signal amplification by (HA)Ag-II nanostructures is several times higher than by plasmonic films of (HA)Ag-I. Thus, the results of the work demonstrated the possibility by changing the synthesis conditions to obtain SERS-active substrates with a high efficiency of SERS enhancement for both anionic and cationic analyte molecules.
Keywords
About the Authors
A. Yu. PanarinBelarus
Minsk
P. Mojzes
Czech Republic
Prague
E. N. Kurtaliev
Uzbekistan
Samarkand
O. S. Kulakovich
Belarus
Minsk
S. N. Terekhov
Belarus
Minsk
References
1. A. Jaworska, S. Fornasaro, V. Sergo, A. Bonifacio. Biosensors, 6 (2016) 47—64
2. H. Liu, X. Gao, C. Xu, D. Liu. Theranostics, 12 (2022) 1870—1903
3. Kenry, F. Nicolson, L. Clark, S. R. Panikkanvalappil, B. Andreiuk, C. Andreou. Nanotheranostics, 6 (2022) 31—49
4. K. Kim, K. S. Shin. Anal. Sci., 27 (2011) 775—783
5. V. Shvalya, G. Filipicˇ, J. Zavasnik, I. Abdulhalim, U. Cvelbar. Appl. Phys. Rev., 7 (2020) 031307(1-35)
6. L. Yang, P. Li, H. Liu, X. Tang, J. Liu. Chem. Soc. Rev., 44 (2015) 2837—2848
7. M. M. Harper, K. S. McKeating, K. Faulds. Phys. Chem. Chem. Phys., 15 (2013) 5312—5328
8. K. Kim, K. S. Shin. Anal. Sci., 27 (2011) 775—783
9. P. A. Mosser-Boss. Nanomaterials, 7 (2017) 142(1—30)
10. J. B. Jackson, N. J. Halas. Proc. Natl. Acad. Sci., 101 (2004) 17930—17935
11. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, M. J. Natan. Science, 267 (1995) 1629—1632
12. G. Zito, G. Rusciano, G. Pesce, A. Dochshanov, A. Sasso. Nanoscale, 7 (2015) 8593—8606
13. H. K. Lee, Y. Hong. Lee, C. S. L. Koh, G. C. Phan-Quang, X. Han, C. L. Lay, H. Y. Fan Sim, Y.-C. Kao, Q. An, X. Y. Lin. Chem. Soc. Rev., 48 (2019) 731—756
14. C. Schmuck, P. Wich, B. Küstner, W. Kiefer, S. Schlücker. Angew. Chem., Int. Ed. Engl., 46 (2007) 4786—4789
15. M. Gellner, S. Niebling, H. Y. Kuchelmeister, C. Schmuck, S. Schlücker. Chem. Commun. (Cambridge, U. K.), 47 (2011) 12762—12764
16. S. Chang, Z. A. Combs, M. K. Gupta, R. Davis, V. V. Tsukruk. ACS Appl. Mater. Interfaces, 2 (2010) 3333—3339
17. J.-S. Wi, S. Tominaka, K. Uosaki, T. Nagao. Phys. Chem. Chem. Phys., 14 (2012) 9131—9136
18. A. M. Yashchenok, D. Borisova, B. V. Parakhonskiy, A. Masic, B.-E. Pinchasik, H. Möhwald, A. G. Skirtach. Ann. Phys., 524 (2012) 723—732
19. I. Y. Stetciura, A. V. Markin, A. N. Ponomarev, A. V. Yakimansky, T. S. Demina, C. Grandfils, D. V. Volodkin, D. A. Gorin. Langmuir, 29 (2013) 4140—4147
20. E.-O. Ganbold, J.-H. Park, U. Dembereldorj, K.-S. Ock, S.-W. Joo. J. Raman Spectrosc., 42, N 8 (2011) 1614—1619
21. M. Moskovits. Rev. Mod. Phys., 57 (1985) 783—826
22. [22] H. K. Lee, Y. H. Lee, C. S. L. Koh, G. C. Phan-Quang, X. Han, C. L. Lay, H. Y. F. Sim, Y.-C. Kao, Q. An, X. Y. Ling. Chem. Soc. Rev., 48 (2019) 731—756
23. D. Lierop, Z. Krpetić, L. Guerrini, I. A. Larmour, J. A. Dougan, K. Faulds, D. Graham. Chem. Commun., 48 (2012) 8192—8194
24. X. Qin, M. Lyu, Y. Si, J. Yang, Z. Wu, J. Li. Anal. Chim. Acta, 1043 (2018) 115—122
25. R. A. Alvarez-Puebla, E. Arceo, P. J. Goulet, J. J. Garrido, R. F. Aroca. J. Phys. Chem. B, 109 (2005) 3787—3792
26. B. Shan, Y. Pu, Y. Chen, M. Liao, M. Li. Coord. Chem. Rev., 371 (2018) 11—37
27. A. Yu. Panarin, A. V. Abakshonok, P. Mojzes, S. N. Terekhov. J. Appl. Spectr., 88, N 5 (2021) 911—917
28. A. V. Abakshonok, A. N. Eryomin, V. E. Agabekov. Adv. Mater. Res., 1085 (2015) 113—118
29. А. Н. Еремин, А. В. Абакшонок, В. Е. Агабеков, М. В. Макаренко. Весцi НАН Беларусi. Сер. хiм. навук, № 3 (2013) 60—68
30. D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, D. G. Fernig. Analyst, 139 (2014) 4855—4861
31. O. Kulakovich, A. Shirokaya, A. Muravitskaya. Nanotechnology, 34 (2023) 405601
32. А. Ю. Панарин, А. В. Абакшонок, А. Н. Еремин, С. Н. Терехов. Опт. и спектр., 122 (2017) 933—938
33. A. M. Michaels, J. Jiang, L. Brus. J. Phys. Chem. B., 104 (2000) 11965—11971
34. I. Kruglenko, J. Burlachenko, B. Snopok. Eng. Proc., 58 (2023) 115, doi: 10.3390/ecsa-10-16200
Review
For citations:
Panarin A.Yu., Mojzes P., Kurtaliev E.N., Kulakovich O.S., Terekhov S.N. Hydroxyapatite Modified with Silver Nanoparticles for Registration of SERS Spectra of Differently Charged Analytes. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):682-690. (In Russ.)