Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Qualitative and Quantitative Multivariate Analysis of Optical Density Spectra of Plastic Waste

Abstract

   5 types of plastics were classified based on NIR spectra of optical density using multivariate cluster analysis in principal component space. Accuracy above 0.96 is obtained by ranking spectral variables by decreasing variance of measured optical density. Changes in polycarbonate VIS-NIR spectra during thermal degradation were modeled using partial least squares method with searching combination moving windows of optimal width. A quantitative calibration of the aging term up to 11.5 years was obtained with a root mean square error of the estimate around 19 days and a residual predictive deviation of more than 45.

About the Authors

P. A. Kulikovskaya
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



M. A. Khodasevich
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



References

1. R. Geyer, J. Jambeck, K. Law. Sci. Adv., 3 (2017) e1700782

2. J. Yang, Y. P. Xu, P. Chen, J. Y. Li, D. Liu, X. L. Chu. J. Cleaner Prod., 431 (2023) 139771

3. J. Zalasiewicz, C. N. Waters, J. A. Ivar do Sul, P. L. Corcoran. Anthropocene, 13 (2016) 4—17

4. Б. С. Кирин, А. Н. Клокова. Успехи в химии и хим. технологии, 3 (2014) 31—33

5. Q. Wang, X. Wu, L. Chen, Z. Yang, Z. Fang. Appl. Spectrosc., 71 (2017) 2538—2548

6. R. Junjuri, M. Gundawar. Waste Management, 117 (2020) 48—57

7. S. Zhu, H. Chen, M. Wang, X. Guo, Y. Lei, G. Jin. Adv. Industr. and Eng. Polymer Res., 2 (2019) 77—81

8. R. Lenz, K. Enders, C. A. Stedmon, D. M. A. Mackenzie, T. G. Nielsen. Marine Pollution Bulletin, 100 (2015) 82—91

9. S. Musazzi, U. Perini. Laser-Induced Breakdown Spectroscopy Theory and Applications, Springer-Verlag Berlin Heidelberg (2014) 56

10. A. Alassali, S. Fiore, K. Kuchta. Waste Management, 82 (2018) 71—81

11. A. Boldizar, K. Möller. Polymer Degradation and Stability, 81 (2003) 359—366

12. A. Rinnan, F. van den Berg, S. B. Engelsen. TrAC Trends in Analytical Chemistry, 28 (2009) 1201—1222

13. G. Schulze, A. Jirasek, M. M. L. Yu, A. Lim, R. F. B. Turner, M. W. Blades. Appl. Spectrosc., 59 (2005) 545—574

14. K. Zhao, Y. Ji, Y. Li, T. Li. Sensors, 18 (2018) 312(1—10), doi: 10.3390/s18010312

15. Z. M. Zhang, S. Chen, Y. Z. Liang. Analyst, 135 (2010) 1138—1146

16. https://code.google.com/archive/p/airpls/

17. A. Savitzky, M. Y. E. Golay. Anal. Chem., 36 (1964) 1627—1639

18. K. H. Esbensen, P. Geladi. Comprehensive Chemometrics (2009) 211—226

19. Б. Дюран, П. Оделл. Кластерный анализ, Москва, Статистика (1977)

20. S. Schiavone, B. Marchionni, R. Bucci, F. Marini. Vibr. Spectrosc., 107 (2020) 103040(1—9)

21. T. W. Liao. Pattern Recognition, 38 (2005) 1857—1874

22. P. Govender, V. Sivakumar. Atm. Poll. Res., 11 (2020) 40—56

23. L.A. Berrueta, R. M. Alonso-Salces, K. Héberger. J. Chromatography A, 1158 (2007) 196—214

24. Z. Xiaobo, Z. Jiewen, M. J. W. Povey, M. Holmes, M. Hanpin. Analyt. Chim. Acta, 667 (2010) 14—32

25. P. Geladi, B. Kowalski. Partial Least-Squares Regression: a Tutorial Analytica Chemica Acta, 186 (1986) 1—17

26. G. D. Garson. Statistical Publishing Associates (2016)

27. R. Zornoza, C. Guerrero, J. Mataix-Solera, K. M. Scow, V. Arcenegui, J. Mataix-Beneyto. Soil Biology & Biochemistry, 40 (2008) 1923—1930

28. М. А. Ходасевич, Н. А. Саскевич. Весцi НАН Беларусi, сер. фiз.-мат. навук, 1 (2018) 77—83

29. Стандартные методы по инфракрасному многомерному количественному анализу: СТ РК АСТМ Е 1655-2011. Введ. РК 20.11.11, Астана: Госстандарт Республики Казахстан (2011)


Review

For citations:


Kulikovskaya P.A., Khodasevich M.A. Qualitative and Quantitative Multivariate Analysis of Optical Density Spectra of Plastic Waste. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):714-722. (In Russ.)

Views: 38


ISSN 0514-7506 (Print)