Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Regularization of Parallel Factor Analysis (PARAFAC): a New Approach to Determining Groups of Fluorophores in the Fluorescence Spectra of Natural Waters

Abstract

   Parallel factor analysis PARAFAC is widely used in relation to fluorescence excitation/emission spectra to track the movement of water masses, as well as to study seasonal changes in the composition and content of dissolved organic matter. The stage of selecting the number of components is one of the most difficult when using factor analysis. The widely used method of analyzing loads when splitting the original set into halves in many cases does not allow determining the best model due to the closeness of their statistical estimates. Since the use of regularization with a penalty for the sum of parameter modules tends to lead to sparse solutions in which some of the coefficients are equal to zero, the use of this approach allows one to select those variables that carry useful information. A procedure is proposed for selecting the number of components when performing parallel factor analysis of fluorescence spectra using a penalty for the 1- and 2-norms of the solution.

About the Authors

I. N. Krylov
Lomonosov Moscow State University
Russian Federation

Moscow



О. N. Erina
Lomonosov Moscow State University
Russian Federation

Moscow



А. N. Drozdova
P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences
Russian Federation

Moscow



I. V. Seliverstova
Lomonosov Moscow State University
Russian Federation

Moscow



T. A. Labutin
Lomonosov Moscow State University
Russian Federation

Moscow



References

1. F. F. Hartline. Science, 203, N 4387 (1979) 1330—1331

2. K. R. Murphy, C. A. Stedmon, D. Graeber, R. Bro. Anal. Methods, 5, N 23 (2013) 6557

3. L. Yang, J. Hur, W. Zhuang. Environ. Sci. and Poll. Res., 22, N 9 (2015) 6500—6510

4. J. Christensen, E. M. Becker, C. S. Frederiksen. Chemom. and Intell. Lab. Systems, 75, N 2 (2005) 201—208

5. T. J. Battin, S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter, L. J. Tranvik. Nature Geoscience, 2, N 9 (2009) 598

6. N. Carr, C. E. Davis, S. Blackbird, L. R. Daniels, C. Preece, M. Woodward, C. Mahaffey. Progress in Oceanography, 177 (2019)

7. Y. Yamashita, R. Jaffé. Environ. Sci. Technol., 42, N 19 (2008) 7374—7379

8. S. A. Walker, R. M. W. Amon, C. Stedmon, S. Duan, P. Louchouarn. J. Geophys. Res.: Biogeosci., 114, № G4 (2009)

9. А. Н. Тихонов. Докл. АН СССР, 151, № 3 (1963) 501—504

10. E. Acar, D. M. Dunlavy, T. G. Kolda. J. Chemometrics, 25, N 2 (2011) 67—86

11. I. N. Krylov, I. V. Seliverstova, T. A. Labutin. J. Appl. Spectr., 90 (2023) 82—87

12. An Introduction to Statistical Learning: with Applications in R, Springer Texts in Statistics, New York, Springer US (2021)

13. L. Breiman. Technometrics, 37, N 4 (1995) 373—384

14. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 3, Springer US (2006)

15. R. Bro. Chemometrics and Intelligent Laboratory Systems, 38, N 2 (1997) 149—171

16. R. H. Byrd, P. Lu, J. Nocedal, C. Zhu. SIAM J. Sci. Comp., 16, N 5 (1995) 1190—1208

17. I. N. Krylov, T. A. Labutin. Spectrochim. Acta Part A: Mol. and Biomol. Spectrosc., 293 (2023) 122441

18. R. Bro, Å. Rinnan, N. (Klaas) M. Faber. Chemom. and Intell. Lab. Systems, 75, N 1 (2005) 69—76

19. I. N. Krylov, A. N. Drozdova, T. A. Labutin. Chemom. and Intell. Lab. Systems, 207 (2020) 104176

20. P. C. Hansen. SIAM Rev., 34, N 4 (1992) 561—580

21. P. G. Coble. Chem. Rev., 107, N 2 (2007) 402—418


Review

For citations:


Krylov I.N., Erina О.N., Drozdova А.N., Seliverstova I.V., Labutin T.A. Regularization of Parallel Factor Analysis (PARAFAC): a New Approach to Determining Groups of Fluorophores in the Fluorescence Spectra of Natural Waters. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):733-740. (In Russ.)

Views: 204


ISSN 0514-7506 (Print)