Regularization of Parallel Factor Analysis (PARAFAC): a New Approach to Determining Groups of Fluorophores in the Fluorescence Spectra of Natural Waters
Abstract
Parallel factor analysis PARAFAC is widely used in relation to fluorescence excitation/emission spectra to track the movement of water masses, as well as to study seasonal changes in the composition and content of dissolved organic matter. The stage of selecting the number of components is one of the most difficult when using factor analysis. The widely used method of analyzing loads when splitting the original set into halves in many cases does not allow determining the best model due to the closeness of their statistical estimates. Since the use of regularization with a penalty for the sum of parameter modules tends to lead to sparse solutions in which some of the coefficients are equal to zero, the use of this approach allows one to select those variables that carry useful information. A procedure is proposed for selecting the number of components when performing parallel factor analysis of fluorescence spectra using a penalty for the 1- and 2-norms of the solution.
Keywords
About the Authors
I. N. KrylovRussian Federation
Moscow
О. N. Erina
Russian Federation
Moscow
А. N. Drozdova
Russian Federation
Moscow
I. V. Seliverstova
Russian Federation
Moscow
T. A. Labutin
Russian Federation
Moscow
References
1. F. F. Hartline. Science, 203, N 4387 (1979) 1330—1331
2. K. R. Murphy, C. A. Stedmon, D. Graeber, R. Bro. Anal. Methods, 5, N 23 (2013) 6557
3. L. Yang, J. Hur, W. Zhuang. Environ. Sci. and Poll. Res., 22, N 9 (2015) 6500—6510
4. J. Christensen, E. M. Becker, C. S. Frederiksen. Chemom. and Intell. Lab. Systems, 75, N 2 (2005) 201—208
5. T. J. Battin, S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter, L. J. Tranvik. Nature Geoscience, 2, N 9 (2009) 598
6. N. Carr, C. E. Davis, S. Blackbird, L. R. Daniels, C. Preece, M. Woodward, C. Mahaffey. Progress in Oceanography, 177 (2019)
7. Y. Yamashita, R. Jaffé. Environ. Sci. Technol., 42, N 19 (2008) 7374—7379
8. S. A. Walker, R. M. W. Amon, C. Stedmon, S. Duan, P. Louchouarn. J. Geophys. Res.: Biogeosci., 114, № G4 (2009)
9. А. Н. Тихонов. Докл. АН СССР, 151, № 3 (1963) 501—504
10. E. Acar, D. M. Dunlavy, T. G. Kolda. J. Chemometrics, 25, N 2 (2011) 67—86
11. I. N. Krylov, I. V. Seliverstova, T. A. Labutin. J. Appl. Spectr., 90 (2023) 82—87
12. An Introduction to Statistical Learning: with Applications in R, Springer Texts in Statistics, New York, Springer US (2021)
13. L. Breiman. Technometrics, 37, N 4 (1995) 373—384
14. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 3, Springer US (2006)
15. R. Bro. Chemometrics and Intelligent Laboratory Systems, 38, N 2 (1997) 149—171
16. R. H. Byrd, P. Lu, J. Nocedal, C. Zhu. SIAM J. Sci. Comp., 16, N 5 (1995) 1190—1208
17. I. N. Krylov, T. A. Labutin. Spectrochim. Acta Part A: Mol. and Biomol. Spectrosc., 293 (2023) 122441
18. R. Bro, Å. Rinnan, N. (Klaas) M. Faber. Chemom. and Intell. Lab. Systems, 75, N 1 (2005) 69—76
19. I. N. Krylov, A. N. Drozdova, T. A. Labutin. Chemom. and Intell. Lab. Systems, 207 (2020) 104176
20. P. C. Hansen. SIAM Rev., 34, N 4 (1992) 561—580
21. P. G. Coble. Chem. Rev., 107, N 2 (2007) 402—418
Review
For citations:
Krylov I.N., Erina О.N., Drozdova А.N., Seliverstova I.V., Labutin T.A. Regularization of Parallel Factor Analysis (PARAFAC): a New Approach to Determining Groups of Fluorophores in the Fluorescence Spectra of Natural Waters. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):733-740. (In Russ.)