Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Regularities of Formation, Taking Into Account the Sizes of the Object, of Spatial-Energy Profile of the Signal Recorded by Active-Pulse Vision Systems

Abstract

   The patterns of formation of the spatial-energy profile (SEP) of the visibility zone (VZ) of active-pulse vision systems (APVS) have been numerically studied, taking into account the ratio of the cross sections of the observation object Aob and the laser illumination beam Alas in the plane of the object location. For this purpose, the concepts of the boundary distance Sbd (at which Aob = Alas) and the multiplier w = Aob/Alas, which is added to the well-known equation for the recorded APVS signal, are introduced. Taking into account the finite length of the VZ, the following cases can be distinguished. If Sbd ≥ Send (end point of the VZ) within zone w =1. Previously known studies were performed for this case. When Sstart (starting point of the VZ) ≤ Sbd < Send within the VZ there may first be a range of distances with a maximum value w1 = 1, after which there is a range with a decreasing factor to a certain minimum value w2 < 1. And finally, when Sbd < Sstart within the limits of the VZ w1(Sdel1) < 1 and w2(Sdel2) < 1 (in this case, w2 is always less than w1, and the delay distance Sdel1 < Sdel2). Taking into account the multiplier w < 1 leads, in the corresponding range, to a change in the shape of the VZ, maximum signal values and other characteristics implemented within the visibility zone. A generalizing parameter, that in practice characterizes the influence of the range of distances, where w < 1, is the maximum operating range (MOR) of the system. For the parameters used in the calculations, taking into account the indicated influence led to a decrease in MOR by 2.9—5.0 times. The main mechanisms of influence of the relative position of Sbd and the VZ on the characteristics of the probe are given. The main results of numerical modeling are confirmed experimentally.

About the Authors

B. F. Kuntsevich
SSPA “Optics, Optoelectronics, and Laser Technology”
Belarus

Minsk



I. N. Puchkouski
SSPA “Optics, Optoelectronics, and Laser Technology”
Belarus

Minsk



S. S. Shavel
SSPA “Optics, Optoelectronics, and Laser Technology”
Belarus

Minsk



S. B. Bushuk
SSPA “Optics, Optoelectronics, and Laser Technology”
Belarus

Minsk



References

1. И. Л. Гейхман, В. Г. Волков. Основы улучшения видимости в сложных условиях, Москва, ООО “Недра-Бизнесцентр” (1999)

2. В. Е. Карасик, В. М. Орлов. Лазерные системы видения, Москва, МГТУ им. Н. Э. Баумана (2001)

3. В. Г. Волков, Б. А. Случак. Науч.-техн. журн. “Контент”, 15, № 3 (2016) 62—70

4. B. Goehler, P. Lutzmann. Opt. Eng., 56, N 3 (2017) 031203

5. M. Laurenzis, E. Bacher. Appl. Opt., 50, N 21 (2011) 3824—3828

6. X. Wang, Y. Cao, W. Cui, X. Liu, S. Fan, Y. Zhou, Y. Li. Proc. SPIE, 9260 (2014) 92604L

7. X. Wang, Y. Zhou, Y. Liu. Proc. SPIE, 8558 (2012) 855823

8. M. Laurenzis, F. Christnacher, D. Monnin. Opt. Lett., 32, N 21 (2007) 3146—3148

9. V. A. Gorobetz, V. V. Kabanov, V. P. Kabashnikov, B. F. Kuntsevich, N. S. Metelskaya, D. V. Shabrov. J. Appl. Spectr., 81, N 2 (2014) 279—287

10. B. F. Kuntsevich. J. Appl. Spectr., 89, N 6 (2022) 1123—1131

11. D. V. Alant’ev, A. V. Golitsyn, N. A. Seĭfi. J. Opt. Technol., 85, N 6 (2018) 355—358

12. А. А. Golitsyn, N. A. Seyfi. Appl. Phys., N 1 (2018) 78—83

13. И. Ф. Балашов. Энергетическая оценка импульсных лазерных дальномеров, пособие по методике инженерных расчетов, СПб: ГИТМО(ТУ) (1999)

14. Е. И. Старовойтов, Н. Е. Зубов. Наука и образование, МГТУ им. Н. Э. Баумана. Электрон. журн., № 9 (2015) 81—105

15. М. С. Малашин, Р. П. Каминский, Ю. Б. Борисов. Основы проектирования лазерных локационных систем, Москва, Высшая школа (1983)

16. O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, D. Letalick. Proc. SPIE, 3707 (1999) 432—448

17. В. Е. Карасик, В. М. Орлов. Локационные лазерные системы видения, Москва, МГТУ им. Н. Э. Баумана (20013)

18. X. Wang, Y. Zhou, S. Fan, X. Liu. Proc. SPIE, 82000 (2011) 82000V

19. B. F. Kuntsevich, D. V. Shabrov. Proc. SPIE, 11159 (2019) 1115910

20. B. F. Kuntsevich, I. N. Puchkouski, S. S. Shavel. J. Appl. Spectr., 90, N 5 (2023) 1082—1091

21. И. Н. Зайдель, Г. И. Куренков. Электронно-оптические преобразователи, Москва, Советское радио (1970)

22. V. A. Gorobets, V. V. Kabanov, V. P. Kabashnikov, B. F. Kuntsevich, N. S. Metelskaya, D. V. Shabrov. J. Appl. Spectr., 82, N 1 (2015) 63—71

23. Е. В. Зайцева. Оценка чувствительности и разрешающей способности телевизионных датчиков на ПЗС-матрицах, дис. … канд. тех. наук, Томский государственный университет систем управления и радиотехники (2015) 72


Review

For citations:


Kuntsevich B.F., Puchkouski I.N., Shavel S.S., Bushuk S.B. Regularities of Formation, Taking Into Account the Sizes of the Object, of Spatial-Energy Profile of the Signal Recorded by Active-Pulse Vision Systems. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):747-755. (In Russ.)

Views: 54


ISSN 0514-7506 (Print)