Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Rapid Detection of Imidacloprid in Apple Juice by Ultraviolet Spectroscopy Coupled with Support Vector Regression and Variable Selection Methods

Abstract

   The widespread use of pesticides poses many potential risks to food safety and human health. Thus, rapid and accurate detection methods for pesticide residues need to be established. In this study, ultraviolet (UV) spectroscopy coupled with support vector regression and variable selection methods was used to quantitatively detect the content of imidacloprid in apple juice. First, the UV spectra of different imidacloprid concentrations in apple juice were collected, and the acquired spectra were preprocessed by Savitzky-Golay smoothing. Then, the feature variables were selected by the variable iterative space shrinkage approach (VISSA), iteratively retains informative variables (IRIV), and random frog (RF) algorithms. Finally, particle swarm optimization support vector regression (PSO-SVR) prediction models based on the feature variables and the full-spectrum variables were established to detect imidacloprid in apple juice. The results showed that the VISSA-PSO-SVR model had the optimal predictive performance, the determination coefficient of the prediction set (Rp2) was 0.99933, and the root mean square error of the prediction set (RMSEP) was 0.0894 mg/L. The results from this study indicated that the combination of UV spectroscopy and the VISSA-PSO-SVR model could be used for the quantitative detection of imidacloprid in apple juice.

About the Authors

D. Meng
College of Physics, Nanjing University of Aeronautics and Astronautics
China

Delong Meng

Nanjing



L. Li
College of Physics, Nanjing University of Aeronautics and Astronautics
China

Lin Li

Nanjing



Z. Liu
College of Physics, Nanjing University of Aeronautics and Astronautics
China

Zhenlu Liu

Nanjing



C. Gu
College of Physics, Nanjing University of Aeronautics and Astronautics
China

Ciyong Gu

Nanjing



W. Zhang
College of Physics, Nanjing University of Aeronautics and Astronautics
China

Weichun Zhang

Nanjing



Z. Zhao
College of Physics, Nanjing University of Aeronautics and Astronautics
China

Zhimin Zhao

Nanjing



References

1. T. Muyesaier, D. R. Huada, W. Li, L. Jia, S. Ross, C. Des, C. Cordia, T. P. Dung, Int. J. Environ. Res. Public Health, 18, 1112 (2021).

2. C. Adelantado, Á. Ríos, and M. Zougagh, Food Additives & Contaminants A, 35, 1755–1766 (2018).

3. F. F. Si, R. B. Zou, S. S. Jiao, X. S. Qiao, Y. R. Guo, G. N. Zhu, Ecotoxic. Environ. Safety, 148, 862–868 (2018).

4. Q. S. Chen, M. M. Hassan, J. Xu, M. Zareef, H. H. Li, Y. Xu, P. Y. Wang, A. A. Agyekum, F. Y. H. Kutsanedzie, A. Viswadevarayalu, Spectrochim. Acta A: Mol. and Biomolec. Spectrosc., 211, 86–93 (2019).

5. S. Kammoun, B. Mulhauser, A. Aebi, E. A. D. Mitchell, G. Glauser, Environ. Poll., 247, 964–972 (2019).

6. A. Decourtye, J. Devillers, S. Cluzeau, M. Charreton, M. Pham-Delègue, Ecotox. and Environ. Safety, 57, 410–419(2004).

7. Y. D. Wang, J. A. Qin, J. Zhang, Z. Y. Jin, J. Y. Luo, M. H. Yang, J. Pharm. Biomed. Analysis, 219, 114931 (2022).

8. J. Chen, W. T. Zhang, Y. Shu, X.H. Ma, X. Y. Cao, Food Anal. Methods, 10, 3452–3461 (2017).

9. S. Babazadeh, P. A. Moghaddam, S. Keshipour, K. Mollazade, J. Iran. Chem. Soc., 17, 1439–1446 (2020).

10. J. Tursen, T. Yang, L. Bai, D. Q. Li, R. K. Tan, Environ. Sci. Poll. Res., 28, 50867–50877 (2021).

11. B. X. Yang, W. Ma, S. Wang, L. Shi, X. J. Li, Z. Y. Ma, Q. H. Zhang, H. M. Li, Food Chem., 387, 132935 (2022).

12. S. Valverde, A. M. Ares, J. L. Bernal, M. J. Nozal, J. Bernal, Microchem. J., 142, 70–77 (2018).

13. J. M. Luo, S. H. Li, Y. W. Wu, C. H. Pang, X. H. Ma, M. Y. Wang, C. H. Zhang, X. Zhi, B. Li, Microchem. J., 183, 107979 (2022).

14. X. Y. Li, X. W. Kan, Analyst, 143, 2150–2156 (2018).

15. G. Y. Tan, Y. J. Zhao, M. Wang, X. J. Chen, B. M. Wang, Q. X. Li, Food Chem., 311, 126055 (2020).

16. M. Du, Q. Yang, W. M. Liu, Y. Ding, H. Chen, X. D. Hua, M. H. Wang, Sci. Total Environ., 723, 137909 (2020).

17. J. G. Wang, S. L. Yang, Y. R. Cao, Y. H. Ye, J. Phys. Chem. C, 126, 7542–7547 (2022).

18. H. Cao, W.T. Qu, X. L. Yang, Anal. Methods, 6, 3799–3803 (2014).

19. H. Y. Zou, W. L. Zhang, Y. Y. Feng, B. Liang, Anal. Methods, 6, 5865–5871 (2014).

20. R. D. Ji, Y. Han, X. Y. Wang, H. Y. Bian, J. Y. Xu, Z. Z. Jiang, X. T. Feng, Appl. Opt., 60, 10383–10389 (2021).

21. M. X. Zhao, Q. S. Chen, Infrared Phys. Technol., 133, 104827 (2023).

22. J. Kennedy, R. Eberhart, Proc. IEEE Int. Conf. Neural Networks, 4, 1942–1948 (1995).

23. B. C. Deng, Y. H. Yun, Y. Z. Liang, L. Z. Yi, Analyst, 139, 4836–4845 (2014).

24. F. X. Wang, C. G. Wang, S. Y. Song, Foods, 11, 1841 (2022).

25. Y. H. Yun, W. T. Wang, M. L. Tan, Y. Z. Liang, H. D. Li, D. S. Cao, H. M. Lu, Q. S. Xu, Anal. Chim. Acta, 807, 36–43 (2014).

26. F. J. Zhang, L. Shi, L. X. Li, Y. F. Zhou, L. Q. Tian, X. M. Cui, Y. P. Gao, J. Food Process Eng., 45, e14096(2022).

27. H. D. Li, Q. S. Xu, Y. Z. Liang, Anal. Chim. Acta, 740, 20–26 (2012).

28. W. Luo, P. Tian, G. Z. Fan, W. T. Dong, H. L. Zhang, X. M. Liu, Infrared Phys. Technol., 123, 104037 (2022).


Review

For citations:


Meng D., Li L., Liu Z., Gu C., Zhang W., Zhao Z. Rapid Detection of Imidacloprid in Apple Juice by Ultraviolet Spectroscopy Coupled with Support Vector Regression and Variable Selection Methods. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):761.

Views: 39


ISSN 0514-7506 (Print)