Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

A Laser-Induced Breakdown Spectroscopic Steel Classification Method Using Mixed Feature Selection and LIME

Abstract

   Laser-induced breakdown spectroscopy (LIBS) technology faces the challenge of redundant or irrelevant features when dealing with high-dimensional data of steel. To enhance the accuracy and interpretability of multivariate classification, this study introduces an innovative hybrid feature selection (FS) method that skillfully combines the filtering characteristics of the select percentile (SP) algorithm with the embedded advantages of the elastic net (EN) algorithm. Under this framework, the support vector machine (SVM) algorithm was applied for classification, demonstrating outstanding performance with an accuracy, precision, and F1 score of 0.9888, 0.9895, and 0.9889 on the test set, respectively. To address the ‘black box’ nature of the SVM algorithm, this paper further introduces the local interpretable model-agnostic explanations (LIME) method. LIME allows for the visualization of the importance of each variable, thereby enhancing the interpretability and credibility of the model. Overall, the model and methods proposed in this study show significant effectiveness in eliminating redundant or irrelevant features and in precise classification, effectively solving most of the challenges faced by LIBS in steel classification issues.

About the Authors

Xiaomei Lin
Changchun University of Technology
China

Xiaomei Lin

Jilin; Changchun



X. Duan
Changchun University of Technology
China

Xinyang Duan

Jilin; Changchun



J. Lin
Changchun University of Technology
China

Jingjun Lin

Jilin; Changchun



Y. Huang
Changchun University of Technology
China

Yutao Huang

Jilin; Changchun



J. Yang
Changchun University of Technology
China

Jiangfei Yang

Jilin; Changchun



Z. Zhang
Changchun University of Technology
China

Zhuojia Zhang

Jilin; Changchun



Y. Dong
Changchun University of Technology
China

Yanjie Dong

Jilin; Changchun



References

1. K. H. Shah, J. Iqbal, P. Ahmad, et al., Rad. Phys. Chem., 170, 0969–806X (2019).

2. Y. Zhang, T. Zhang, H. Li, Spectrochim. Acta B: At. Spectrosc., 181, 106218 (2021).

3. W. Naixiao, W. Xilin, C. Ping, et al., Sensors, 18, 2623 (2018).

4. T. Feng, X. Zhang, M. Li, et al., Anal. Methods, 13, 3424–3432 (2021).

5. O. Gazeli, D. Stefas, S. Couris, Materials, 14, 541 (2021).

6. L. Brunnbauer, Z. Gajarska, H. Lohninger, et al., TrAC Trends Anal. Chem., 159, 116859 (2022).

7. T. Boucher, C. Carey, M. D. Dyar, S. Mahadevan, S. Clegg, R. Wiens, J. Chemom., 29, 484–491 (2015).

8. T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. D. Dyar, S. Mahadevan, E. A. Breves, K. H. Lepore, S. M. Clegg, Spectrochim. Acta B: At. Spectrosc., 107, 1–10 (2015).

9. H. Sun, C. Yang, Y. Chen, et al., Appl. Opt., 61, 1559 (2022).

10. M. Yao, G. Fu, T. Chen, et al., J. Anal. At. Spectrom., 36, 361–367 (2020).

11. M. Yuan, Q. Zeng, J. Wang, et al., Opt. Eng., 60, 3286 (2021).

12. S. Kumar, K. Chakravarty, Energy Rep., 6, 343–349 (2020).

13. H. Njah, S. Jamoussi, W. Mahdi, Intelligence, 89, 1012–2443 (2021).

14. I. Guyon, A. Elisseeff, J. Machine Learn. Res., 3, 1157–1182 (2003).

15. Y. Saeys, I. Inza, P. Larrañaga, Bioinformatics, 23, 2507–2517 (2007).

16. T. Mehmood, K. H. Liland, L. Snipen, S. Sæbø, Chemom. Intell. Lab. Syst., 118, 62–69 (2012).

17. A. Larsson, H. Andersson, L. Landstroem, J. Anal. At. Spectrom., 30, 1117–1127 (2015).

18. C. Huffman, H. Sobral, et al., Spectrochim. Acta Part B: At. Spectrosc., 162, 105721 (2019).

19. A. Kumar Myakalwar, N. Spegazzini, C. Zhang, et al., Sci. Rep., 5, 13169 (2015).

20. F. Ruan, L. Hou, T. Zhang, et al., Analyst, 146, 1023–1031 (2020).

21. S. Lu, S. Shen, J. Huang, et al., Spectrochim. Acta B: At. Spectrosc., 150, 49–58 (2018).

22. C. Retracted, J. Electrical and Comp. Eng., 1 (2022).

23. M. T. Ribeiro, S. Singh, C. Guestrin, Proc. 22<sup>nd</sup> ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17, 1135–1144 (2016).

24. S. C. Hung, H. C. Wu, M. H. Tseng, Remote Sensing Scene Classification and Explanation Using RSSCNet and LIME, 10, 6151 (2020).

25. Vitaly I. Korepanov, J. Raman Spectrosc., 51, 0377–0486 (2020).

26. H. Bai, P. Liu, X. Fu, et al., Spectrochim. Acta B: At. Spectrosc., 199, 106587 (2023).


Review

For citations:


Lin X., Duan X., Lin J., Huang Y., Yang J., Zhang Z., Dong Y. A Laser-Induced Breakdown Spectroscopic Steel Classification Method Using Mixed Feature Selection and LIME. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):765.

Views: 39


ISSN 0514-7506 (Print)