A Laser-Induced Breakdown Spectroscopic Steel Classification Method Using Mixed Feature Selection and LIME
Abstract
Laser-induced breakdown spectroscopy (LIBS) technology faces the challenge of redundant or irrelevant features when dealing with high-dimensional data of steel. To enhance the accuracy and interpretability of multivariate classification, this study introduces an innovative hybrid feature selection (FS) method that skillfully combines the filtering characteristics of the select percentile (SP) algorithm with the embedded advantages of the elastic net (EN) algorithm. Under this framework, the support vector machine (SVM) algorithm was applied for classification, demonstrating outstanding performance with an accuracy, precision, and F1 score of 0.9888, 0.9895, and 0.9889 on the test set, respectively. To address the ‘black box’ nature of the SVM algorithm, this paper further introduces the local interpretable model-agnostic explanations (LIME) method. LIME allows for the visualization of the importance of each variable, thereby enhancing the interpretability and credibility of the model. Overall, the model and methods proposed in this study show significant effectiveness in eliminating redundant or irrelevant features and in precise classification, effectively solving most of the challenges faced by LIBS in steel classification issues.
Keywords
About the Authors
Xiaomei LinChina
Xiaomei Lin
Jilin; Changchun
X. Duan
China
Xinyang Duan
Jilin; Changchun
J. Lin
China
Jingjun Lin
Jilin; Changchun
Y. Huang
China
Yutao Huang
Jilin; Changchun
J. Yang
China
Jiangfei Yang
Jilin; Changchun
Z. Zhang
China
Zhuojia Zhang
Jilin; Changchun
Y. Dong
China
Yanjie Dong
Jilin; Changchun
References
1. K. H. Shah, J. Iqbal, P. Ahmad, et al., Rad. Phys. Chem., 170, 0969–806X (2019).
2. Y. Zhang, T. Zhang, H. Li, Spectrochim. Acta B: At. Spectrosc., 181, 106218 (2021).
3. W. Naixiao, W. Xilin, C. Ping, et al., Sensors, 18, 2623 (2018).
4. T. Feng, X. Zhang, M. Li, et al., Anal. Methods, 13, 3424–3432 (2021).
5. O. Gazeli, D. Stefas, S. Couris, Materials, 14, 541 (2021).
6. L. Brunnbauer, Z. Gajarska, H. Lohninger, et al., TrAC Trends Anal. Chem., 159, 116859 (2022).
7. T. Boucher, C. Carey, M. D. Dyar, S. Mahadevan, S. Clegg, R. Wiens, J. Chemom., 29, 484–491 (2015).
8. T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. D. Dyar, S. Mahadevan, E. A. Breves, K. H. Lepore, S. M. Clegg, Spectrochim. Acta B: At. Spectrosc., 107, 1–10 (2015).
9. H. Sun, C. Yang, Y. Chen, et al., Appl. Opt., 61, 1559 (2022).
10. M. Yao, G. Fu, T. Chen, et al., J. Anal. At. Spectrom., 36, 361–367 (2020).
11. M. Yuan, Q. Zeng, J. Wang, et al., Opt. Eng., 60, 3286 (2021).
12. S. Kumar, K. Chakravarty, Energy Rep., 6, 343–349 (2020).
13. H. Njah, S. Jamoussi, W. Mahdi, Intelligence, 89, 1012–2443 (2021).
14. I. Guyon, A. Elisseeff, J. Machine Learn. Res., 3, 1157–1182 (2003).
15. Y. Saeys, I. Inza, P. Larrañaga, Bioinformatics, 23, 2507–2517 (2007).
16. T. Mehmood, K. H. Liland, L. Snipen, S. Sæbø, Chemom. Intell. Lab. Syst., 118, 62–69 (2012).
17. A. Larsson, H. Andersson, L. Landstroem, J. Anal. At. Spectrom., 30, 1117–1127 (2015).
18. C. Huffman, H. Sobral, et al., Spectrochim. Acta Part B: At. Spectrosc., 162, 105721 (2019).
19. A. Kumar Myakalwar, N. Spegazzini, C. Zhang, et al., Sci. Rep., 5, 13169 (2015).
20. F. Ruan, L. Hou, T. Zhang, et al., Analyst, 146, 1023–1031 (2020).
21. S. Lu, S. Shen, J. Huang, et al., Spectrochim. Acta B: At. Spectrosc., 150, 49–58 (2018).
22. C. Retracted, J. Electrical and Comp. Eng., 1 (2022).
23. M. T. Ribeiro, S. Singh, C. Guestrin, Proc. 22<sup>nd</sup> ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17, 1135–1144 (2016).
24. S. C. Hung, H. C. Wu, M. H. Tseng, Remote Sensing Scene Classification and Explanation Using RSSCNet and LIME, 10, 6151 (2020).
25. Vitaly I. Korepanov, J. Raman Spectrosc., 51, 0377–0486 (2020).
26. H. Bai, P. Liu, X. Fu, et al., Spectrochim. Acta B: At. Spectrosc., 199, 106587 (2023).
Review
For citations:
Lin X., Duan X., Lin J., Huang Y., Yang J., Zhang Z., Dong Y. A Laser-Induced Breakdown Spectroscopic Steel Classification Method Using Mixed Feature Selection and LIME. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):765.