Evaluating the Effectiveness of Different Laser Wavelengths for Wind Measurements Using а Fabry-Perot Interferometer
Abstract
The atmospheric wind field in the troposphere and stratosphere notably impacts human production and life. The lidar is one of the most effective means of detecting the atmosphere in this region due to its high resolution and sensitivity. To meet this need, aerosol and molecular backscattering signals of different wave-lengths were analyzed via lidar technology. The results showed that the 355 nm laser provides an advantage in detecting the atmosphere under clear weather conditions, and the 1064 nm laser achieves superior detection performance under severe haze weather conditions, while the detection performance of the 532 nm laser varies between those of the other lasers. The detection performance of the system was simulated using a 532 nm laser, and the maximum detection height reached 43 km under clear weather conditions and 28 km under polluted weather conditions. This analysis provides support for obtaining atmospheric wind fields in the troposphere and stratosphere under all weather conditions in the future.
About the Authors
Z. FangChina
Zhiyuan Fang
Zhejiang Province; Ningbo
S. Li
China
Shu Li
Zhejiang Province; Ningbo; Jiangsu Province; Xuzhou
Y. Deng
China
Yuanyuan Deng
Zhejiang Province; Ningbo
H. Yang
China
Hao Yang
Anhui Province; Hefei
Z. Kuang
China
Zhiqiang Kuang
Anhui Province; Hefei
X. Xu
China
Xiang Xu
Anhui Province; Hefei
References
1. D. Hua, T. Kobayashi, J. Appl. Opt., 44, No. 30, 6474(1–8) (2005).
2. Z. Astrid, G. A. André, L. Astrid, J. Energies, 13, No. 23, 6264 (2020).
3. S. Tang, Y. Guo, X. Wang, et al., J. Front. Earth Sci. (2020).
4. D. Debao, Y. Shizhi, W. Ningquan, et al., J. Phys.: Conf. Ser., 1739, No. 1, 012048 (2021).
5. J. Zheng, D. Sun, T. Chen, et al., J. Curr. Opt. Photon., 2, No. 2, 195–202 (2018).
6. J. Chen, Z. Li, M. Lv, et al. J. Atm. Chem. Phys., 19, No. 13, 27–42 (2019).
7. M. Lixia, Z. Guang, Y. Qing, et al., J. Agric. Forest Meteorology, 301–302 (2021).
8. D. Hua, T. Kobayashi, J. Appl. Opt., 44, No. 647, 4–8 (2005).
9. Korb Flesia, J. Appl. Opt., 38, 432–440 (1999).
10. M. L. Chanin, A. G. Rnier, A. Hauchecorne, et al., J. Geophys. Res. Lett., 16, No. 11, 1273–1276 (1989).
11. W. Guo, Z. Yan, X. Hu, et al., Chin. J. Geophys., 63, No. 2, 394–400 (2020).
12. F. Shen, H. Cha, J. Dong, et al., J. Chin. Opt. Lett., 7, No. 7, 593–597 (2009).
13. F. Shen, P. Zhuang, W. Shi, et al., Appl. Phys. B, 124, 138 (2018).
14. N. Zhang, R. Zhao, D. Sun, et al., Infrared and Laser Eng., 49(S2), 191–196 (2020).
15. A. Zhou, Development of wind Measurement Lidar control system and wind field observation; University of Science and Technology of China (2020).
16. C. Wang, 1.5 μm wavelength all-fiber multifunctional coherent Doppler wind detection Lidar; University of Science and Technology of China (2019).
17. J. Wang, M. Yuan, N. Chen, et al., J. Appl. Opt., 58, 4425 (2019).
18. X Haiyun, K. Xian, et al., Opt. Express (2012).
19. R. Ferrare, S. Melfi, D. Whitheman, et al., J. Geophys. Res., 1031, No. 196, 63–72 (1998).
20. Z. Fang, H. Yang, Y. Cao, et al., J. Sustainability, 13, No. 2, 875 (2021).
Review
For citations:
Fang Z., Li S., Deng Y., Yang H., Kuang Z., Xu X. Evaluating the Effectiveness of Different Laser Wavelengths for Wind Measurements Using а Fabry-Perot Interferometer. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):766.