Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Terahertz Single-Pixel Imaging Optimized Through Sparse Representation of аn Overcomplete Dictionary

Abstract

   Terahertz (THz) single-pixel imaging has received major research attention because of the lack of a suitable high-resolution array detector for THz imaging applications. Improving both imaging speed and quality has become a research hotspot for this field in recent years. In this study, a terahertz single-pixel imaging system with Hadamard spatial encoding was constructed by using optically induced semiconductor materials to perform THz wave modulation. Sparse coding was added to the system’s reconstruction algorithm to enhance imaging quality. Numerous image patches were then collected from a natural image set to train an overcomplete dictionary and each patch in the measured image was reconstructed through sparse representation. To validate the effectiveness of the proposed algorithm, the reconstruction performances of different algorithms were compared under various conditions (i.e., with sampling rates varying from 5 to 100 % and with noise levels within a signal-to-noise ratio range of 10–50 dB). The proposed algorithm, in combination with sparse representation of an overcomplete dictionary, showed a higher peak signal-to-noise ratio and a lower mean square error than both the inverse Hadamard transform (IHT) and TVAL3 algorithms. Finally, THz imaging experiments were performed to validate the algorithm’s reconstruction performance at sub-Nyquist sampling rates. The experimental and simulation results coincided closely, thus indicating that the use of the proposed algorithm enhances the signal-to-noise ratio of the reconstructed image, reduces its mean square error, and retains greater image detail. The proposed algorithm was demonstrated to be the preferred choice for THz single-pixel imaging applications.

About the Authors

J. Guo
School of Information Engineering, Southwest University of Science and Technology; TianFu College of Southwestern University of Finance and Economics
China

Mianyang



Q. Ch. Liu
School of Information Engineering, Southwest University of Science and Technology; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology
China

Mianyang; Chengdu



H. Deng
School of Information Engineering, Southwest University of Science and Technology; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology
China

Mianyang; Chengdu



G. L. Li
School of Information Engineering, Southwest University of Science and Technology; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology
China

Mianyang; Chengdu



L. P. Shang
School of Information Engineering, Southwest University of Science and Technology; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology
China

Mianyang; Chengdu



References

1. S. C. Zhong, Front. Mech. Eng. PRC, 14, No. 3, 273–281 (2019).

2. M. Danciu, T. Alexa-Stratulat, C. Stefanescu, G. Dodi, B. I. Tamba, C. T. Mihai, G. D. Stanciu, A. Luca, I. A. Spiridon, L. B. Ungureanu, V. Ianole, I. Ciortescu, C. Mihai, G. Stefanescu, I. Chirila, R. Ciobanu, V. L. Drug, Materials, 12, No. 9, 1519 (2019).

3. X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, Y. Luo, Trends Biotechnol., 34, No. 10, 810–824 (2016).

4. A. F. Ren, A. Zahid, D. Fan, X. D. Yang, M. A. Imran, A. Alomainy, Q. H. Abbasi, Trends Food Sci. Tech., 85, 241–251 (2019).

5. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Joerdens, T. Hochrein, M. Koch, Appl. Opt., 49, No. 19, E48–E57 (2010).

6. E. J. Candes, J. Romberg, T. Tao, IEEE T Inform. Theory, 52, No. 2, 489–509 (2006).

7. D. L. Donoho, IEEE T Inform. Theory, 52, No. 4, 1289–1306 (2006).

8. J. H. Shapiro, Phys. Rev. A, 78, No. 6, 061802 (2008).

9. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, D. M. Mittleman, Appl. Phys. Lett., 93, No. 12, 121105 (2008).

10. Y. Ma, J. Grant, S. Saha, D. R. S. Cumming, Opt. Lett., 37, No. 9, 1484–1486 (2012).

11. C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, W. J. Padilla, Optica, 3, No. 2, 133–138 (2016).

12. S. Rout, S. R. Sonkusale, Appl. Photon., 1, No. 8, 086102 (2016).

13. Y. Shang, X. Wang, W. Sun, P. Han, J. Ye, S. Feng, Y. Zhang, Opt. Express, 27, No. 10, 14725–14735 (2019).

14. Y. Lu, X.-K. Wang, W.-F. Sun, S.-F. Feng, J.-S. Ye, P. Han, Y. Zhang, IEEE T Thz Sci. Tech., 10, No. 5, 495–501 (2020).

15. R. I. Stantchev, X. Yu, T. Blu, E. Pickwell-MacPherson, Nat. Commun., 11, No. 1, 2535 (2020).

16. T. Lu, Z. Qiu, Z. Zhang, J. Zhong, Opt. Laser Eng., 134, 106301 (2020).

17. P. G. Vaz, D. Amaral, L. F. Requicha Ferreira, M. Morgado, J. Cardoso, Opt. Express, 28, No. 8, 11666–11681 (2020).

18. C. Zeng, J. Ye, Z. Wang, N. Zhao, M. Wu, Signal Image Video P, 16, No. 1, 47–54 (2021).

19. D. Yang, C. Li, S. Liu, Y. Liu, Int. J. Comp. Int. Systems, 12, No. 2, 873–880 (2019).

20. M. Elad, M. Aharon, IEEE Trans. Image Process, 15, No. 12, 3736–3745 (2006).

21. Z. Lin, S. Jia, X. Zhou, H. Zhang, L. Wang, G. Li, Z. Wang, Opt. Laser Eng., 166, 107571 (2023).

22. J. Yang, J. Wright, T. S. Huang, Y. Ma, IEEE Trans. Image Process, 19, No. 11, 2861–2873 (2010).

23. I. Ismail, M. M. Eltoukhy, G. Eltaweel, Comp. Syst. Sci. Eng., 45, No. 1, 167–181 (2023).

24. H. Wu, R. Wang, C. Li, M. Chen, G. Zhao, Z. He, L. Cheng, Opt. Commun., 454, 124490 (2020).

25. M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, N. Radwell, Sci. Rep., 7, No. 1, 3464 (2017).

26. W. K. Yu, Sensor, 19, No. 19, 4122 (2019).

27. J. Guo, H. Deng, Q. Liu, G. Li, L. Shang, Terahertz Single-Pixel Imaging Based on Optimized Reordering of the Hadamard Basis, SSRN Preprint (2022).

28. X. Hu, J. Suo, T. Yue, L. Bian, Q. Dai, Opt. Express, 23, No. 9, 11092–11104 (2015).

29. L. Lopez-Garcia, W. Cruz-Santos, A. Garcia-Arellano, P. Filio-Aguilar, J. A. Cisneros-Martinez, R. Ramos-Garcia, Opt. Express, 30, No. 8, 13714–13732 (2022).


Review

For citations:


Guo J., Liu Q.Ch., Deng H., Li G.L., Shang L.P. Terahertz Single-Pixel Imaging Optimized Through Sparse Representation of аn Overcomplete Dictionary. Zhurnal Prikladnoii Spektroskopii. 2024;91(5):767.

Views: 38


ISSN 0514-7506 (Print)