Application of in situ surface-enhanced raman spectroscopy for investigation of electrode processes at the interface of an aluminum electrode with a chloroaluminate ionic liquid based on triethylamine hydro-chloride
Abstract
The method of surface-enhanced Raman spectroscopy (SERS) was used to study the electrode processes at the interface between Al and ionic liquid. This method has great promise in the field of studying electrochemical processes, since it allows one to determine the composition of the electrolyte in a thin near-electrode layer during electrode polarization. It was demonstrated that aluminum has SERS-activity in a chloroaluminate ionic liquid based on Et3NHCl. Using the in situ SERS method, it was shown that with an increase in the cathodic polarization of the aluminum electrode, the intensity of the peaks associated with AlCl4– ion increases and the intensity of the peaks associated with Al2Cl7– ion decreases. During anodic polarization of the electrode, the reverse process was observed: a decrease in the content of AlCl4– ions and an increase in the concentration of Al2Cl7–. The concentrations of chloroaluminate anions in the near-electrode layer do not change at cathodic overpotentials (above the overpotential of reaching the limiting current) and at anodic overpotentials (above the passivation overpotential). The obtained dependences of the relative intensity of AlCl4– and Al2Cl7– peaks on the electrode overpotential correlate with the stationary polarization curves. It has been experimentally proved that passivation of an aluminum electrode during anodic dissolution is caused by the formation of aluminum chloride on the electrode surface.
About the Authors
A. V. BorozdinRussian Federation
Yekaterinburg
V. A. Elterman
Russian Federation
Yekaterinburg
L. A. Yolshina
Russian Federation
Yekaterinburg
References
1. Y. Hu, L. J. Wayment, C. Haslam, X. Yang, S. Lee, Y. Jin, W. Zhang. Energy Chem., 3, N 1 (2021) 100048, https://doi.org/10.1016/j.enchem.2020.100048
2. Q. Chen, X. Lai, Y. Hou, H. Gu, L. Lu, X. Liu, D. Ren, Y. Guo, Y. Zheng. Separation and Purification Technol., 308 (2023) 122966, https://doi.org/10.1016/j.seppur.2022.122966
3. E. Faegh, B. Ng, D. Hayman, W. E. Mustain. Nat. Energy, 6, N 1 (2020) 21—29, https://doi.org/10.1038/s41560-020-00728-y
4. D. Kong, H. Zhao, P. Ping, Y. Zhang, G. Wang. Proc. Safety and Environ. Protection, 174 (2023) 448—459, https://doi.org/10.1016/j.psep.2023.04.017
5. G. A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin, E. Knipping, W. Peters, J. Drillet, S. Passerini, R. Hahn. Adv. Mater., 28, N 35 (2016) 7564—7579, https://doi.org/10.1002/adma.201601357
6. D. Ma, D. Yuan, C. Ponce De León, Z. Jiang, X. Xia, J. Pan. Energy and Environ. Mater., 6, N 1 (2023) e12301, https://doi.org/10.1002/eem2.12301
7. H. Chen, H. Xu, S. Wang, T. Huang, J. Xi, S. Cai, F. Guo, Z. Xu, W.Gao, C. Gao. Sci. Adv., 3, N 12 (2017) eaao7233, https://doi.org/10.1126/sciadv.aao7233
8. V. A. Elterman, A. V. Borozdin, K. V. Druzhinin, E. A. Il’ina, P. Yu. Shevelin, L. A. Yolshina. J. Mol. Liquids, 394 (2024) 123702, https://doi.org/10.1016/j.molliq.2023.123702
9. S. Xia, X.-M. Zhang, K. Huang, Y.-L. Chen, Y.-T. Wu. J. Electroanalyt. Chem., 757 (2015) 167—175, https://doi.org/10.1016/j.jelechem.2015.09.022
10. X. Dong, H. Xu, H. Chen, L. Wang, J. Wang, W. Fang, C. Chen, M. Salman, Z. Xu, C. Gao. Carbon, 148 (2019) 134—140, https://doi.org/10.1016/j.carbon.2019.03.080
11. X. Dong, H. Chen, H. Lai, L. Wang, J. Wang, W. Fang, C. Gao. J. Energy Chem., 66 (2022) 38—44, https://doi.org/10.1016/j.jechem.2021.07.016
12. H. Xu, T. Bai, H. Chen, F. Guo, J. Xi, T. Huang, S. Cai, X. Chu, J. Ling, W. Gao, Z. Xu, C. Gao. Energy Storage Mater., 17 (2019) 38—45, https://doi.org/10.1016/j.ensm.2018.08.003
13. F. Gan, K. Chen, N. Li, Y. Wang, Y. Shuai, X. He. Ionics, 25, N 9 (2019) 4243—4249, https://doi.org/10.1007/s11581-019-02983-w
14. J. M. Johnston, N. Canever, T. Nann. J. Phys. Chem. C, 126, N 40 (2022) 16993—17001, https://doi.org/10.1021/acs.jpcc.2c05354
15. A. V. Borozdin, P. Yu. Shevelin, V. A. Elterman, L. A. Yolshina. Phys. Chem. Chem. Phys., 25, N 44 (2023) 30543–30552, https://doi.org/10.1039/D3CP03403H
16. V. A. Elterman, P. Yu. Shevelin, L. A. Yolshina, A. V. Borozdin. Electrochim. Acta, 389 (2021) 138715, https://doi.org/10.1016/j.electacta.2021.138715
17. V. A. Elterman, P. Yu. Shevelin, L. A. Yolshina, A. V. Borozdin. J. Mol. Liquids, 351 (2022) 118693, https://doi.org/10.1016/j.molliq.2022.118693
18. P. K. Lai, M. Skyllas-Kazacos. Electrochim. Acta, 32, N 10 (1987) 1443—1449, https://doi.org/10.1016/0013-4686(87)85083-1
19. P. K. Lai, M. Skyllas-Kazacos. J. Electroanalyt. Chem. and Interfacial Electrochem., 248, N 2 (1988) 431—440, https://doi.org/10.1016/0022-0728(88)85103-9
20. C. Wang, A. Creuziger, G. Stafford, C. L. Hussey. J. Electrochem. Soc., 163, N 14 (2016) H1186—H1194, https://doi.org/10.1149/2.1061614jes
21. A. J. Keeler, G. R. Salazar-Banda, A. E. Russell. Current Opinion Electrochem., 17 (2019) 90—96, https://doi.org/10.1016/j.coelec.2019.04.009
22. X. Shen, T. Sun, L. Yang, A. Krasnoslobodtsev, R. Sabirianov, M. Sealy, W.-N. Mei, Z. Wu, L. Tan. Nat. Commun., 12, N 1 (2021) 820, https://doi.org/10.1038/s41467-021-21108-4
23. S. S. Masango, R. A. Hackler, N. Large, A.-I. Henry, M. O. McAnally, G. C. Schatz, P. C. Stair, R. P. Van Duyne. Nano Lett., 16, N 7 (2016) 4251—4259, https://doi.org/10.1021/acs.nanolett.6b01276
24. S. Takahashi, L. A. Curtiss, D. Gosztola, N. Koura, M.-L. Saboungi. Inorg. Chem., 34, N 11 (1995) 2990—2993, https://doi.org/10.1021/ic00115a029
25. V. A. Elterman, P. Yu. Shevelin, L. A. Yolshina, A. V. Borozdin. J. Mol. Liquids, 364 (2022) 120061, https://doi.org/10.1016/j.molliq.2022.120061
Review
For citations:
Borozdin A.V., Elterman V.A., Yolshina L.A. Application of in situ surface-enhanced raman spectroscopy for investigation of electrode processes at the interface of an aluminum electrode with a chloroaluminate ionic liquid based on triethylamine hydro-chloride. Zhurnal Prikladnoii Spektroskopii. 2024;91(6):781-787. (In Russ.)