Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Optical and electrical properties of the Sb2(SxSe1–x)3 films for solar cells

Abstract

Using the thermal evaporation method, Sb2(SxSe1-x)3 films have been produced from powders of the binary compounds of Sb2S3 and Sb2Se3 at temperature of the substrate of 300℃. The effect exerted by the elemental composition ratio S/(S+Se) on optical and electric properties of Sb2(SxSe1-x)3 films has been studied. It has been demonstrated that the band gap width of Sb2(SxSe1-x)3 films is growing with an increase in the concentration of sulfur in the films produced. It has been found that the synthesized films feature low Urbach energies, offering their low-defect structure. Based on the temperature dependences of resistance, the presence of deep-lying levels within the band gap of synthesized films has been revealed. The activation energy of these deep-lying levels was varying in the range of 0.5–0.8 eV depending on the ratio of the atomic concentration S/(S+Se). These results indicate the possibility of producing effective solar cells based  on Sb2(Sx,Se1–x)3 with the use of thermal evaporation from powders of the binary compounds of Sb2Sand Sb2Se3

About the Authors

М. S. Tivanov
Belarusian State University
Belarus

Minsk



Т. M. Razykov
Physicotechnical Institute of the Academy of Sciences of the Republic of Uzbekistan; Institute of Semiconductor Physics and Microelectronic
Uzbekistan

Tashkent



K. M. Kuchkarov
Physicotechnical Institute of the Academy of Sciences of the Republic of Uzbekistan; Institute of Semiconductor Physics and Microelectronic
Uzbekistan

Tashkent



L. S. Lyashenko
Belarusian State University
Belarus

Minsk



E. S. Voropay
Belarusian State University
Belarus

Minsk



Sh. B. Utamurodova
Institute of Semiconductor Physics and Microelectronic
Uzbekistan

Tashkent



D. Z. Isakov
Physicotechnical Institute of the Academy of Sciences of the Republic of Uzbekistan
Uzbekistan

Tashkent



M. A. Makhmudov
Physicotechnical Institute of the Academy of Sciences of the Republic of Uzbekistan
Uzbekistan

Tashkent



A. N. Olimov
Physicotechnical Institute of the Academy of Sciences of the Republic of Uzbekistan
Uzbekistan

Tashkent



S. A. Muzafarova
Institute of Semiconductor Physics and Microelectronic
Uzbekistan

Tashkent



D. S. Bayko
Belarusian State University
Belarus

Minsk



References

1. M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao. Prog. Photovolt.: Res. Appl., 31 (2023) 3—16, https://doi.org/10.1002/pip.3646

2. Photovoltaics report Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE Projects GmbH [Online], https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/PhotovoltaicsReport.pdf. [Accessed: Nov. 12, 2023]

3. T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, H. M. Upadhyaya. Solar Energy, 85 (2011) 1580—1608, https://doi.org/10.1016/j.solener.2010.12.002

4. Y. Cao, C. Wang, B. Li, K. Zhang, X. Xu, J. Hu, X. Chen. Jap. J. Appl. Phys., 50 (2011) 125001, https://doi:10.1143/JJAP.50.125001

5. X. Wang, R. Tang, Ch. Wu, Ch. Zhu, T. Chen. J. Energy Chem., 27 (2018) 713—721, https://doi:10.1016/j.jechem.2017.09.031

6. A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, L. Qiao. Solar Energy, 201 (2020) 227—246, https://doi.org/10.1016/j.solener.2020.03.009

7. Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.-J. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent, J. Tang. Nature Photon., 9 (2015) 409—415, https://doi.org/10.1038/nphoton.2015.78

8. B. Yang, S. Qin, D. Xue, L. Jiang, R. Tang, Ch. Jiang, Ch. Wu, D. Gao, X. Wang, F. Fang, Ch. Zhu, T. Chen. Prog. Photovolt.: Res. Appl., 25 (2017) 113—122, https://doi:10.1002/pip.2819

9. X. Hu, J. Tao, R. Wang, Y. Wang, Y. Pan, G. Weng, X. Luo, Sh. Chen, Z. Zhu, J. Chu, H. Akiyama. J. Power Sources, 493 (2021) 229737, https://doi:10.1016/j.jpowsour.2021.229737

10. X. Wang, R. Tang, Ch. Jiang, W. Lian, H. Ju, G. Jiang, Zh. Li, Ch. Zhu, T. Chen. Adv. Energy Mater. (2020) 2002341, https://doi:10.1002/aenm.202002341

11. X. Liu, X. Xiao, Y. Yang, D. J. Xue, D. B. Li, Ch. Chen, Sh. Lu, L. Gao, Y. He, M.C. Beard, G. Wang, Sh. Chen, J. Tang. Prog. Photovolt.: Res. Appl., 25, N 10 (2017) 861—870, https://doi.org/10.1016/j.optlastec.2023.110107

12. F. I. Mustafa, S. Gupta, N. Goyal, S. K. Tripathi. J. Optoelectron. Adv. Mater., 11, N 12 (2019) 2019—2023

13. Mamta, Y. Singh, K. K. Maurya, V. N. Singh. Solar Energy Mater. Solar Cells, 230 (2021) 111223, https://doi.org/10.1016/j.solmat.2021.111223

14. T. M. Razykov, A. Kh. Shukurov, K. M. Kuchkarov, B. A. Ergashev, R. R. Khurramov, J. G. Bekmirzoyev, A. A. Mavlonov. Appl. Solar Energy, 55 (2019) 376—379, https://doi:10.3103/S0003701X19060094

15. T. M. Razykov, K. M. Kuchkarov, M. S. Tivanov, B. A. Ergashev, R. Khurramov, D. Z. Isakov, A. Olimov, D. S. Baiko, N. I. Polyak, O. V. Korolik, S. D. Sharipov. Appl. Solar Energy, 58, N 4 (2022) 461—465, https://doi.org/10.3103/S0003701X22040132

16. G.-X. Liang, X.-H. Zhang, H.-L. Ma, J.-G. Hu, B. Fan, Zh.-K. Luo, Zh. H. Zheng, J. T. Luo, P. Fan. Solar Energy Mater. and Solar Cells, 160 (2017) 257—262, https://doi.org/10.1016/j.solmat.2016.10.042

17. O. S. Hutter, L. J. Phillips, P. J. Yates, J. D. Major, K. Durose. IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (2018) 0027—0031, https://doi:10.1109/PVSC.2018.8547653

18. X. Liu, J. Chen, M. Luo. Appl. Mater. Interfaces, 6 (2014) 10687—10695, https://doi:10.1021/am502427s

19. Y. H. Kwon, Y. B. Kim, M. Jeong, H. W. Do, H. K. Cho, J. Y. Lee. Solar Energy Mater. and Solar Cells, 172 (2017) 11—17, https://doi.org/10.1016/j.solmat.2017.07.004

20. H. M. Pathan, Ch. D. Lokhande. Bull. Mater. Sci., 27, N 2 (2004) 85—111, https://doi.org/10.1007/BF02708491

21. A. Kulkarni, S. Arote, H. Pathan, R. S. Patil. Mater. Renewable and Sust. Energy, 4, N 1 (2015), https://doi.org/10.1007/s40243-015-0058-5

22. Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, Ju. Zhang, J. Chen, K. Zhou, J. Han, Y. Cheng, J. Tang. Adv. Energy Mater., 4 (2014) 1301846, https://doi.org/10.1002/aenm.201301846

23. M. D. Khan, M. Aamir, M. Sohail, M. Sher, J. Akhtar, M. A. Malik, N. Revaprasadu. Solar Energy, 169 (2018) 526, https://doi:10.1016/j.solener.2018.05.026

24. L. Wang, D.-B. Li, K. Li, C. Chen, Ch. Chen, H.X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, Fe. Huang, Y. He, H. Song, G. Niu, J. Tang. Nature Energy, 2, N 4 (2017) 17046, https://doi.org/10.1038/nenergy.2017.46

25. D. K. Schroder. Semiconductor Material and Device Characterization, John Wiley & Sons, New York, (1990)

26. B. Yang, D.-J.Xue, M. Leng, J. Zhong, L. Wang, H. Song, Y. Zhou, J. Tang. Sci. Rep., 5 (2015) 10978, https://doi:10.1038/srep10978(2015)

27. T. Jiménez, C. I. León-Pimentel, Di Seuret-Jiménez, M. Courel. General Chem., 5, N 2 (2019) 180029, https://doi:10.21127/yaoyigc20180029

28. M. Tivanov, A. Moskalev, I. Kaputskaya, P. Zukowski. Przegląd Elektrotechniczny, 92, N 8 (2016) 85—87, https://doi:10.15199/48.2016.08.23

29. F. Urbach. Phys. Rev. J., 92 (1953) 1324, https://doi.org/10.1103/PhysRev.92.1324


Review

For citations:


Tivanov М.S., Razykov Т.M., Kuchkarov K.M., Lyashenko L.S., Voropay E.S., Utamurodova Sh.B., Isakov D.Z., Makhmudov M.A., Olimov A.N., Muzafarova S.A., Bayko D.S. Optical and electrical properties of the Sb2(SxSe1–x)3 films for solar cells. Zhurnal Prikladnoii Spektroskopii. 2024;91(6):830-836. (In Russ.)

Views: 125


ISSN 0514-7506 (Print)