Optical and electrical properties of the Sb2(SxSe1–x)3 films for solar cells
Abstract
Using the thermal evaporation method, Sb2(SxSe1-x)3 films have been produced from powders of the binary compounds of Sb2S3 and Sb2Se3 at temperature of the substrate of 300℃. The effect exerted by the elemental composition ratio S/(S+Se) on optical and electric properties of Sb2(SxSe1-x)3 films has been studied. It has been demonstrated that the band gap width of Sb2(SxSe1-x)3 films is growing with an increase in the concentration of sulfur in the films produced. It has been found that the synthesized films feature low Urbach energies, offering their low-defect structure. Based on the temperature dependences of resistance, the presence of deep-lying levels within the band gap of synthesized films has been revealed. The activation energy of these deep-lying levels was varying in the range of 0.5–0.8 eV depending on the ratio of the atomic concentration S/(S+Se). These results indicate the possibility of producing effective solar cells based on Sb2(Sx,Se1–x)3 with the use of thermal evaporation from powders of the binary compounds of Sb2S3 and Sb2Se3.
About the Authors
М. S. TivanovBelarus
Minsk
Т. M. Razykov
Uzbekistan
Tashkent
K. M. Kuchkarov
Uzbekistan
Tashkent
L. S. Lyashenko
Belarus
Minsk
E. S. Voropay
Belarus
Minsk
Sh. B. Utamurodova
Uzbekistan
Tashkent
D. Z. Isakov
Uzbekistan
Tashkent
M. A. Makhmudov
Uzbekistan
Tashkent
A. N. Olimov
Uzbekistan
Tashkent
S. A. Muzafarova
Uzbekistan
Tashkent
D. S. Bayko
Belarus
Minsk
References
1. M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao. Prog. Photovolt.: Res. Appl., 31 (2023) 3—16, https://doi.org/10.1002/pip.3646
2. Photovoltaics report Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE Projects GmbH [Online], https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/PhotovoltaicsReport.pdf. [Accessed: Nov. 12, 2023]
3. T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, H. M. Upadhyaya. Solar Energy, 85 (2011) 1580—1608, https://doi.org/10.1016/j.solener.2010.12.002
4. Y. Cao, C. Wang, B. Li, K. Zhang, X. Xu, J. Hu, X. Chen. Jap. J. Appl. Phys., 50 (2011) 125001, https://doi:10.1143/JJAP.50.125001
5. X. Wang, R. Tang, Ch. Wu, Ch. Zhu, T. Chen. J. Energy Chem., 27 (2018) 713—721, https://doi:10.1016/j.jechem.2017.09.031
6. A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, L. Qiao. Solar Energy, 201 (2020) 227—246, https://doi.org/10.1016/j.solener.2020.03.009
7. Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.-J. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent, J. Tang. Nature Photon., 9 (2015) 409—415, https://doi.org/10.1038/nphoton.2015.78
8. B. Yang, S. Qin, D. Xue, L. Jiang, R. Tang, Ch. Jiang, Ch. Wu, D. Gao, X. Wang, F. Fang, Ch. Zhu, T. Chen. Prog. Photovolt.: Res. Appl., 25 (2017) 113—122, https://doi:10.1002/pip.2819
9. X. Hu, J. Tao, R. Wang, Y. Wang, Y. Pan, G. Weng, X. Luo, Sh. Chen, Z. Zhu, J. Chu, H. Akiyama. J. Power Sources, 493 (2021) 229737, https://doi:10.1016/j.jpowsour.2021.229737
10. X. Wang, R. Tang, Ch. Jiang, W. Lian, H. Ju, G. Jiang, Zh. Li, Ch. Zhu, T. Chen. Adv. Energy Mater. (2020) 2002341, https://doi:10.1002/aenm.202002341
11. X. Liu, X. Xiao, Y. Yang, D. J. Xue, D. B. Li, Ch. Chen, Sh. Lu, L. Gao, Y. He, M.C. Beard, G. Wang, Sh. Chen, J. Tang. Prog. Photovolt.: Res. Appl., 25, N 10 (2017) 861—870, https://doi.org/10.1016/j.optlastec.2023.110107
12. F. I. Mustafa, S. Gupta, N. Goyal, S. K. Tripathi. J. Optoelectron. Adv. Mater., 11, N 12 (2019) 2019—2023
13. Mamta, Y. Singh, K. K. Maurya, V. N. Singh. Solar Energy Mater. Solar Cells, 230 (2021) 111223, https://doi.org/10.1016/j.solmat.2021.111223
14. T. M. Razykov, A. Kh. Shukurov, K. M. Kuchkarov, B. A. Ergashev, R. R. Khurramov, J. G. Bekmirzoyev, A. A. Mavlonov. Appl. Solar Energy, 55 (2019) 376—379, https://doi:10.3103/S0003701X19060094
15. T. M. Razykov, K. M. Kuchkarov, M. S. Tivanov, B. A. Ergashev, R. Khurramov, D. Z. Isakov, A. Olimov, D. S. Baiko, N. I. Polyak, O. V. Korolik, S. D. Sharipov. Appl. Solar Energy, 58, N 4 (2022) 461—465, https://doi.org/10.3103/S0003701X22040132
16. G.-X. Liang, X.-H. Zhang, H.-L. Ma, J.-G. Hu, B. Fan, Zh.-K. Luo, Zh. H. Zheng, J. T. Luo, P. Fan. Solar Energy Mater. and Solar Cells, 160 (2017) 257—262, https://doi.org/10.1016/j.solmat.2016.10.042
17. O. S. Hutter, L. J. Phillips, P. J. Yates, J. D. Major, K. Durose. IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (2018) 0027—0031, https://doi:10.1109/PVSC.2018.8547653
18. X. Liu, J. Chen, M. Luo. Appl. Mater. Interfaces, 6 (2014) 10687—10695, https://doi:10.1021/am502427s
19. Y. H. Kwon, Y. B. Kim, M. Jeong, H. W. Do, H. K. Cho, J. Y. Lee. Solar Energy Mater. and Solar Cells, 172 (2017) 11—17, https://doi.org/10.1016/j.solmat.2017.07.004
20. H. M. Pathan, Ch. D. Lokhande. Bull. Mater. Sci., 27, N 2 (2004) 85—111, https://doi.org/10.1007/BF02708491
21. A. Kulkarni, S. Arote, H. Pathan, R. S. Patil. Mater. Renewable and Sust. Energy, 4, N 1 (2015), https://doi.org/10.1007/s40243-015-0058-5
22. Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, Ju. Zhang, J. Chen, K. Zhou, J. Han, Y. Cheng, J. Tang. Adv. Energy Mater., 4 (2014) 1301846, https://doi.org/10.1002/aenm.201301846
23. M. D. Khan, M. Aamir, M. Sohail, M. Sher, J. Akhtar, M. A. Malik, N. Revaprasadu. Solar Energy, 169 (2018) 526, https://doi:10.1016/j.solener.2018.05.026
24. L. Wang, D.-B. Li, K. Li, C. Chen, Ch. Chen, H.X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, Fe. Huang, Y. He, H. Song, G. Niu, J. Tang. Nature Energy, 2, N 4 (2017) 17046, https://doi.org/10.1038/nenergy.2017.46
25. D. K. Schroder. Semiconductor Material and Device Characterization, John Wiley & Sons, New York, (1990)
26. B. Yang, D.-J.Xue, M. Leng, J. Zhong, L. Wang, H. Song, Y. Zhou, J. Tang. Sci. Rep., 5 (2015) 10978, https://doi:10.1038/srep10978(2015)
27. T. Jiménez, C. I. León-Pimentel, Di Seuret-Jiménez, M. Courel. General Chem., 5, N 2 (2019) 180029, https://doi:10.21127/yaoyigc20180029
28. M. Tivanov, A. Moskalev, I. Kaputskaya, P. Zukowski. Przegląd Elektrotechniczny, 92, N 8 (2016) 85—87, https://doi:10.15199/48.2016.08.23
29. F. Urbach. Phys. Rev. J., 92 (1953) 1324, https://doi.org/10.1103/PhysRev.92.1324
Review
For citations:
Tivanov М.S., Razykov Т.M., Kuchkarov K.M., Lyashenko L.S., Voropay E.S., Utamurodova Sh.B., Isakov D.Z., Makhmudov M.A., Olimov A.N., Muzafarova S.A., Bayko D.S. Optical and electrical properties of the Sb2(SxSe1–x)3 films for solar cells. Zhurnal Prikladnoii Spektroskopii. 2024;91(6):830-836. (In Russ.)