Synthesis of silicon nanoparticles by electric discharge modification of micropowder in ethanol
Abstract
Nanosized crystalline silicon material with particle size in the range of 2–5 nm was synthesized by plasma treatment of commercial silicon micropowder consisting of submicron amorphous spherical particles with an average size of 250 nm under the action of electric discharge in ethanol. The properties of the obtained nanomaterials were studied using optical absorption and Raman spectroscopy, as well as electron microscopy methods. The possibility of additional laser-induced modification of the obtained nanostructures was considered. The silicon-containing nanomaterial synthesized in the work passed testing of electrochemical characteristics as an anode material for a lithium-ion battery and showed a specific capacity of ~800 mA ∙ h/g with a stable Coulomb efficiency of about 100% for 55 cycles.
About the Authors
A. A. NevarBelarus
Minsk
A. R. Shumejko
Belarus
Minsk
M. I. Nedelko
Belarus
Minsk
V. G. Kornev
Belarus
Minsk
N. V. Tarasenka
Belarus
Minsk
G. Chen
China
Shanghai
L. Shi
China
Shanghai
References
1. B. Liang, Y. Liu, Y. Xu. J. Power Sources, 267 (2014) 469—490
2. J. B. Szczech, S. Jin. Energy & Environ. Sci., 4, N 1 (2011) 56—72
3. D. Ma, Z. Cao, A. Hu. Nano-Micro Lett., 6, N 4 (2014) 347—358
4. D. Leblanc, R. Dolbec, A. Guerfi, G. Jiayin, P. Hovington, M. Boulos, K. Zaghib. In: Silicon Nanomaterials Sourcebook: Hybrid Materials, Arrays, Networks, and Devices, 2, 1st ed., CRC Press (2017) 463—484
5. F. Kunze, S. Kuns, M. Spree, T. Hülser, C. Schulz, H. Wiggers, S. M. Schnurre. Powder Technology, 342 (2018) 880—886
6. B. Barwe, F. Riedel, O. E. Cibulka, I. Pelant, J. Benedikt. J. Phys. D: Appl. Phys., 48, N 31 (2015) 314001
7. G. Viera, P. Roca i Cabarrocas, S. Hamma, S. N. Sharma, J. Costa, E. Bertran. MRS Online Proceedings Library, 467 (1997) 313—318
8. R. W. Collins, A. S. Ferlauto. Current Opinion in Solid State and Mater. Sci., 6, N 5 (2002) 425—437
9. B. Shi, Y. Zou, G. Xu, C. Tu, C. Jin, F. Sun, Y. Li, H. Li, L. Zhou, Z. Yue. Solid State Ionics, 402 (2023) 116366
10. P. M. Ette, P. B. Bhargav, N. Ahmed, B. Chandra, A. Rayarfrancis, K. Ramesha. Electrochim. Acta, 330 (2020) 135318
11. N.V. Tarasenko, A. V. Butsen, A. A. Nevar, N. N. Tarasenka, E. Stankevičius, P. Gečys, R. Trusovas, E. Daugnoraitė, G. Račiukaitis. Semiconductors, 52, N 16 (2018) 2140—2142
12. W. Zhang, A. Farooq, W. Wang. Mater. and Manufacturing Proc., 31, N 2 (2015) 113—118
13. A. A. Nevar, V. V. Kiris, M. M. Mardanian, M. I. Nedelko, N. V. Tarasenko. High Temperature Material Processes, 20, N 3 (2016) 251—265
14. В. С. Бураков, Н. В. Тарасенко, М. И. Неделько, Е. А. Невар, М. Марданиан, Т. Ф. Григорьева. Физика и химия обработки материалов, 6 (2012) 74—80
15. M. Mardanian, A. A. Nevar, M. I. Nedelko, N. V. Tarasenko. Eur. Phys. J. D, 67, N 10 (2013) 208—213
16. A. Nevar, N. Tarasenka, M. Nedelko, N. Tarasenko. Mater. Today: Proc., 52, Part 2 (2022) 232—238
17. В. С. Бураков, Е. А. Невар, М. И. Неделько, Н. В. Тарасенко. Рос. хим. журн., LVII, № 3-4 (2013) 17—30
18. Y. Li, C. Chen, J.-T. Li, Y. Yang, Z.-M. Lin. Nanoscale Res. Lett., 6 (2011) 454
19. N. G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R. J. Potter, S. P. Edwardson, P. French, M. Sharp, G. Dearden, K. G. Watkins. J. Nanopart. Res., 12, N 2 (2010) 573—580 [20] A. M. Gouda, N. K. Allam, M. A. Swillam. RSC Adv., 7 (2017) 26974—29682
Review
For citations:
Nevar A.A., Shumejko A.R., Nedelko M.I., Kornev V.G., Tarasenka N.V., Chen G., Shi L. Synthesis of silicon nanoparticles by electric discharge modification of micropowder in ethanol. Zhurnal Prikladnoii Spektroskopii. 2024;91(6):849-856. (In Russ.)