Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Assessment of the electrochemical potential of thylakoid membranes in Hordeum vulgare L. seedlings of different ages under heat stress using the method of differential absorption spectroscopy

Abstract

Using the method of differential absorption spectroscopy and technology of the electrochromic shift of pigment absorption, the electrochemical potential on the thylakoid membrane and its components in the primary leaves of 4-, 7- and 11-day-old seedlings of Hordeum vulgare L. was studied. It was found that during the ontogenesis of the first leaf, the proton motive force decreased and the proportion of its electrical component increased. Exposure to elevated temperature (40°C for 3 h) decreased the magnitudes of the electrochemical potential, proton gradient, and thylakoid membrane conductivity for protons, and also increased the electrical potential on the thylakoid membrane in young 4-day-old seedlings. In 7-day-old leaves, which have a fully formed photosynthetic apparatus, no significant changes in the formation of the electrochemical potential on the thylakoid membrane were detected as a result of 3-hours heat treatment at 40°C. In the senescent primary leaf of 11-day-old seedlings, a thermoinduced decrease in the electrical component of the proton motive force and an increase in the transthylakoid proton gradient were detected. It was concluded that the electrochemical potential of thylakoid membranes reacts differently to heat effects in Hordeum vulgare L. seedlings of different ages.

About the Author

N. L. Pshybytko
Belarusian State University
Belarus

Minsk



References

1. M. Janni, E. Maestri, M. Gullì, M. Marmiroli, N. Marmiroli. Front Plant Sci., 14 (2024) 1297569

2. S. Mathur, D. Agrawal, A. Jajoo. J. Photochem. Photobiol. B: Biology, 137 (2014) 116—126 [3] Y. Niu, Y. Xiang. Front. Plant Sci., 9 (2018) 915

3. C. Pastenes, P. Horton. Plant Physiol., 112, N 3 (1996) 1253—1260

4. D. Nash, M. Miyao, N. Murata. Biochim. Biophys. Bioenergetics, 807, N 2 (1985) 127—133

5. Y. Yamane, Y. Kashino, K. Satoh. Photosynth. Res., 57 (1998) 51—59

6. M. Yoshioka, S. Uchida, H. Mori, K. Komayama, S. Ohira, N. Morita, T. Nakanishi, Y. Yamamoto.

7. J. Biol. Chem., 281 (2006) 21660—21669

8. N. Pshybytko, J. Kruk, L. Kabashnikova, K. Strzalka. Biochim. Biophys. Acta, 1777 (2008) 1393—1399

9. N. Pshybytko, J. Kruk, E. Lysenko, K. Strzalka, V. Demidchik. Env. Exp. Bot., 206 (2023) 105151

10. Н. Л. Пшибытко. Журн. прикл. спектр., 91, № 2 (2024) 264—272 [N. L. Pshybytko. J. Appl. Spectr., 91, N 2 (2024) 342—348]

11. J. Essemine, M. Qu, H. Mi, X.-G. Zhu. Front Plant Sci., 7 (2016) 383

12. Y. Sun, C. Frankenberg, J. D. Wood, D. S. Schimel, M. Jung, L. Guanter, D. T. Drewry, M. Verma, A. Porcar-Castell, T. J. Griffis, L. Gu, T. S. Magney, P. Köhler, B. Evans, K. Yuen. Science, 358 (2017) 6360

13. W. Huang, Y.-J. Yang, S.-B. Zhang, T. Liu. Front Plant Sci., 9 (2018) 239

14. S. Wada, D. Takagi, C. Miyake, A. Makino, Y. Suzuki. Int. J. Mol. Sci., 20 (2019) 2068

15. L. Wang, K. B. Ma, Z. G. Lu, S.-X. Ren, H.-R. Jiang, J.-W. Cui, G. Chen, N.-J. Teng, H.-M. Lam, B. Jin. BMC Plant Biol., 20 (2020) 86

16. Н. Л. Пшибытко, Л. Н. Калитухо, Н. Б. Жаворонкова, Л. Ф. Кабашникова. Биол. мембраны, 20, № 2 (2003) 121—127

17. X. W. Zhang, J. P. Li, A. L. Liu, J. Zou, X. Zhou, J. Xiang, W. Rerksiri, Y. Peng, X. Xiong, X. Chenet. PloS One, 7, N 11 (2012) e49652

18. D. E. Marias, F. C. Meinzer, C. Still. Trees, 31, N 3 (2017) 1091—1099

19. A. Kanojia, S. Gupta, M. Benina, A. R. Fernie, B. Mueller-Roeber, T. Gechev, P. P. Dijkwel. J. Exp. Bot., 71, N 20 (2020) 6340—6354

20. U. Armbruster, V. C. Galvis, H.-H. Kunz, D. D. Strand. Curr. Opin. Plant Biol., 37 (2017) 56—62

21. S. Wilson, M. P. Johnson, A. V. Ruban. Plant Physiol., 187, N 1 (2021) 263—275

22. W. Junge, H. T. Witt. Z. Naturforsh., 23b (1968) 244—254

23. J. A. Cruz, T. J. Avenson, A. Kanazawa, K. Takizawa, G. E. Edwards, D. M. Kramer. J. Exp. Bot., 56 (2005) 395—406

24. E. Weis. Plant Physiol., 70, N 4 (1982) 1530—1534

25. I. Yordanov, T. Tsonev, V. Goltsev. Photosynthetica, 33, N 3-4 (1997) 423—431

26. Н. Г. Бухов, Н. Буше, Р. Карпантье. Физиология растений, 44, N 4 (1997) 605—612

27. T. D. Sharkey. Plant Cell Environ., 28 (2005) 269—277

28. S. A. Khorobrykh, M. Karonen, E. Tyystjärvi. FEBS Lett., 589 (2015) 779—786

29. U. Heber, N. G. Bukhov, S. Neimanis, Y. Kobayashi. Plant Cell Physiol., 36 (1995) 1639—1647

30. E. Weis. Planta, 151, N 1 (1981) 33—39

31. N. G. Bukhov, G. Samson, R. Carpentier. Photochem. Photobiol., 72, N 3 (2000) 351—357

32. M. Krishnan-Schmieden, P. E. Konold, J. T. M. Kennis. Nature Commun., 12 (2021) 2291

33. J. Amaral, A. K. M. Lobo, E. Carmo-Silva. New Phytologist, 241 (2024) 35—51

34. M. D. L. Trinh, S. Masuda. Front. Plant Sci., 13 (2022) 919896

35. J. A. Cruz, C. A. Sacksteder, A. Kanazawa, D. M. Kramer. Biochemistry, 40 (2001) 1226—1237

36. D. M. Kramer, J. A. Cruz, A. Kanazawa. Trends Plant Sci., 8 (2003) 27—32

37. N. R. Baker, J. Harbinson, D. M. Kramer. Plant Cell Env., 30 (2007) 1107—1125

38. П. Ф. Рокицкий. Биологическая статистика, Минск, Вышэйшая школа (1973)

39. M. Lösche, G. Feher, M. Y. Okamura. The Photosynthetic Bacterial Reaction Center, Eds. J. Breton and A. Verméglio, New York-London, Plenum Press (1988) 151—164

40. U. Schreiber, C. Klughammer. PAM Appl. Notes, 10 (2008) 1—10

41. Н. Л. Пшибытко, Л. Н. Калитухо, Н. Б. Жаворонкова, Л. Ф. Кабашникова. Физиология растений, 51, N 1 (2004) 20—26

42. G. A. Davis, A. W. Rutherford, D. M. Kramer. Philos. Trans. R Soc. B Biol. Sci., 372 (2017) 20160381

43. G. N. Johnson. Biochim. Biophys. Acta, 1807 (2011) 384—389

44. W. J. Nawrocki, N. J. Tourasse, A. Taly, F. Rappaport, F. A. Wollman. Annu. Rev. Plant Biol., 66 (2015) 49—74

45. K. Takizawa, A. Kanazawa, D. M. Kramer. Plant Cell Environ., 31 (2008) 235—243

46. H.-H. Kunz, U. Armbruster, S. Muhlbauer, J. de Vries, G. A. Davis. New Phytologist (2024), doi: 10.1111/nph.19661

47. Y. Cao, Y. Pan, H. Huang. Nature, 496 (2013) 317—322

48. M. Uflewski, T. Rindfleisch, K. Korkmaz. Nature Commun., 15 (2024) 2792

49. W. Yamori, T. Shikanai. Annu. Rev. Plant Biol., 67 (2016) 81—106

50. N. L. Pshybytko, L. N. Kalituho, L. F. Kabashnikova. Bulg. J. Plant Physiology, Special issue. Proc. Eur. Workshop on Environmental Stress and Sustainable Agriculture (2003) 304—313

51. M. Li, V. Svoboda, G. Davis, D. Kramer, H. H. Kunz, H. Kirchhoff. Nature Plants, 7 (2021) 979—988

52. T. Hagino, T. Kato, G. Kasuya, K. Kobayashi, T. Kusakizako, S. Hamamoto, T. Sobajima, Y. Fujiwara, K. Yamashita, H. Kawasaki. Nature Commun., 13 (2022) 2505


Review

For citations:


Pshybytko N.L. Assessment of the electrochemical potential of thylakoid membranes in Hordeum vulgare L. seedlings of different ages under heat stress using the method of differential absorption spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2024;91(6):877-884. (In Russ.)

Views: 47


ISSN 0514-7506 (Print)