Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Structural and photoluminescence properties of Co2+-doped ZnCdO nanopowders

Abstract

A simple solution technique was used for the synthesis of Co2+-doped ZnCdO nanopowder. A number  of investigational methods have been done on the synthesised powder to study the structural, morphological, and photoluminescence properties. X-ray diffraction (XRD) studies revealed that ZnO is in a hexagonal phase and CdO is in a cubic phase when the samples were calcined at 650°C for 2 h by raising the temperature at the speed of 15o/min. Irregular shaped grains were observed from the scanning electron microscopy (SEM) images. Energy dispersive X-ray analysis (EDAX) indicated the existence of doped Co species and constituent metal ions. The bands at 417 and 460 cm–1 confirmed the presence of ZnO and CdO molecules by Fourier transform infrared spectroscopy studies. From optical absorption studies, Dq, B and C (crystal field parameter and inter electronic repulsion parameters) were evaluated and found to be 980, 940, and 3800 cm–1, thus confirming the doped Co2+ ions are in octahedral symmetry. Photoluminescence studies showed the emission peaks in the blue region at an excitation wavelength of 360 nm. CIE chromaticity coordinates were estimated at x = 0.1577, y = 0.0771.

About the Authors

D. V. Satish
Department of Physics, Andhra Loyola College
India

Vijayawada



R. V. S. S. N. Ravikumar
Department of Physics, Acharya Nagarjuna University
India

Nagarjuna Nagar



M. C. Rao
Department of Physics, Andhra Loyola College
India

Vijayawada



References

1. H. M. Yang, S. Nie, Mater. Chem. Phys., 114, 279–282 (2009).

2. M. Yang, Z. X. Guo, K. H. Qiu, J. P. Long, G. F. Yin, D. G. Guan, S. T. Liu, S. J. Zhou, Appl. Surf. Sci., 256, 4201–4205 (2010).

3. S. S. Lin, J. H. Song, Y. F. Lu, Z. L. Wang, Nanotech., 20, 365703 (2009).

4. M. Krunks, A. Katerski, T. Dedova, I. O. Acik, A. Mere, Sol. Energy Mater. Sol. Cells, 92, 1016–1019 (2008).

5. S. Rasouli, S. J. Moeen, J. Alloys Compd., 509, 1915–1919 (2011).

6. J. B. Cui, Y. C. Soo, T. P. Chen, J. Phys. Chem. C, 112, 4475–4479 (2008).

7. Z. Sofer, D. Sedmidubsky, S. Huber, J. Hejtmanek, M. Marysko, K. Jurek, M. Mikulics, J. Cryst. Growth, 314, 123–128 (2011).

8. X. R. Qu, D. C. Jia, Mater. Lett., 63, 412–414 (2009).

9. Q. Chen, J. L. Wang, Chem. Phys. Lett., 474, 336–341 (2009).

10. K. Sakurai, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, S. Fujita, Sg. Fujita, Jpn. J. Appl. Phys., 39L, 1146–1148 (2000).

11. P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara, M. Watanabe, J. Cryst. Growth, 209, 532–536 (2000).

12. Z. Z. Ye, D. W. Ma, J. H. He, J. Y. Huang, B. H. Zhao, X. D. Luo, Z. Y. Xu, J. Cryst. Growth, 256, 78–83 (2003).

13. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, X. G. Gao, J. P. Li, Appl. Phys. Lett., 84, 3085–3087 (2004).

14. N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, K. V. Yumashev, J. Lumin., 55, 265–269 (1993).

15. K. V. Yumashev, Appl. Opt., 38, 6343–6346 (1999).

16. M. B. Camargo, R. D. Stultz, M. Birnbaum, M. Kokta, Opt. Lett., 20, 339–341 (1995).

17. I. A. Denisov, M. L. Demchuk, N. V. Kuleshov, K. V. Yumashev, Appl. Phys. Lett., 77, 2455–2457 (2000).

18. G. Li, X. Wang, Y. Wang, X. Shi, N. Yao, B. Zhang, Phys. E, 40, 2649–2653 (2008).

19. O. Vigil, L. Vaillant, F. Cruz, G. Santana, A. Morales-Acevedo, G. Conteras-Puente, Thin Solid Films, 361–362, 527–553 (2000).

20. G. Natarajan, S. Daniels, D. C. Cameron, L. O. Reilly, A. Mitra, P. J. Mc Nally, O. F. Lucas, R. T. Rajendra Kumar, Ian Reid, A. L. Bradley, J. Appl. Phys., 100, 033520 (2006).

21. E. M. Bachari, S. B. Amor, G. Baud, M. Jacquet, Mater. Sci. Eng. B, 79, 165–168 (2001).

22. A. M. Bazargan, S. M. A. Fateminia, M. Esmaeilpour Ganji, M. A. Bahrevar, Chem. Eng. J., 155, 523–527 (2009).

23. S. P. Yawale, S. V. Pakade, C. S. Adgaonkar, Ind. J. Pure Appl. Phys., 33, 34–37 (1995).

24. B. Saha, S. Das, K. K. Chattopadhyay, Solar Energy Mater. Sol. Cell, 91, 1692–1697 (2007).

25. J. Coates, Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., Chichester, 10815–10837 (2000).

26. G. I. Andrade, E. F. Barbosa-Stancioli, A. A. P. Mansur, W. L. Vasconcelos, H. S. Mansur, J. Mater. Sci., 43, 450–458 (2008).

27. Suresh Chandra, A Text Book of Molecular Spectroscopy, Narosa Publishing House, 106 (2009).

28. Y. J. Kwon, K. H. Kima, C. S. Limb, K. B. Shim, J. Ceram. Proc. Res., 3, 146–149 (2002).

29. H. S. Mansur, C. M. Sadahira, A. N. Souza, A. A. P. Mansur, Mater. Sci. Eng. C, 28, 539–548 (2008).

30. D. M. Fernandes, R. Silva, A. A. W. Hechenleitner, E. Radovanovic, M. A. C. Melo, E. A. G. Pineda, Mater. Chem. Phys., 115, 110–115 (2009).

31. A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier Publishing Co., Amsterdam (1984).

32. X. Gao, X. Li, W. Yu, J. Phys. Chem. B, 109, 1155–1161 (2005).


Review

For citations:


Satish D., Ravikumar R., Rao M. Structural and photoluminescence properties of Co2+-doped ZnCdO nanopowders. Zhurnal Prikladnoii Spektroskopii. 2024;91(6):912.

Views: 22


ISSN 0514-7506 (Print)