Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectrophotometric and liquid chromatographic methods for quantification of antibacterial fluorescent dye (phloxine B) in dental disclosing tablets and toothpaste samples

Abstract

Double beam UV-visible spectrophotometry and high-performance liquid chromatography (HPLC) techniques have been used to determine the antibacterial fluorescent phloxine B dye in dental preparations. In the visible wavelength range of 400 to 800 nm, the spectrophotometric signal was obtained at λmax = 539 nm. The HPLC process used C-18 (5 μm) with a UV detector at 254 nm, 1.5 mL/min flow rate, 0.635 min retention time, and water, acetonitrile, and 2-propanol as the mobile phase. Several parameters have been used to analyze the performance of the HPLC and double-beam UV-visible spectrophotometry apparatuses, including stability, detection and quantification limits, calibration curves, and repeatability. The study focused on the repeatability of spectrophotometric and HPLC procedures for 8×10–6 and 5×10–6 mol/L of phloxine B. The results showed that the standard deviation (STD) for ten spectrophotometric measurements and eight HPLC measurements, respectively, was ±0.0004 and ±2.487 with relative standard deviation (RSD%) of 0.048 and 1.05%. Throughout the 90 minutes of the analysis period, the spectrophotometric and HPLC signals for 8×10–6 and 5×10–6 mol/L of phloxine B were shown to be exceptionally stable. The ranges of the calibration curves were 1×10-6–2×10–5 mol/L for the spectrophotometry and 1×10–5–1×10–4 mol/L for HPLC. Within the concentration ranges under consideration, they were assigned linear relations with correlation coefficients (r2) of 0.9995 for spectrophotometric and 0.99 for HPLC measurements. The detection limits for phloxine B were found to be 1.24×10–8 mol/L (0.0103 ppm) and 8.25×10–7 mol/L (0.068 ppm), respectively, using double beam UV-visible spectrophotometry and HPLC methods. These techniques use recovery rates ranging from 95 to 111% to determine the phloxine B dye that has been spiked in disclosing tablets and toothpaste samples. 

About the Author

Ali F. Alghamdi
Chemistry department, College of Science, Taibah University
Saudi Arabia

Medina



References

1. R. W. Sabnis, Handbook of Biological Dyes and Stains: Synthesis and Industrial Applications (2010).

2. R. Rasooly, FEMS Immunology and Med. Microbiology, 49, 261–265 (2007).

3. P. Melin, C. Norez, I. Callebaut, J. Mem. Biol., 208, 203–212 (2005).

4. Food and Drug Administration, The Code of Federal Regulations of the United States of America, Title 21, Pt 74.1328, U S Government Printing Office, 296 (2001).

5. J. C. Slabbert, J. Esthet. Dent., 2, 177–180 (1990).

6. H. Wang, Biomed. Environ. Sci., 21, 438–441 (2008).

7. L. Y. Brovko, J. Food Prot., 72, 1020–1024 (2009).

8. P. M. Van Midwoud, Anal. Chem. (2010).

9. Q. X. Li, J. P. Alcantara–Licudine, L. P. Li, J. Chromatogr. Sci., 35, 573–577 (1997).

10. H. A. Badran, M. F. Almudhaffer, Q. M. Hassan, Rom. J. Phys., 58, 962–969 (2012).

11. A. Rasooly, A. Weisz, Agents. Chemother., 46, 3650–3653 (2002).

12. A. Hofmann, Cam. Univ. Press., 477–521 (2010).

13. E. A. Taha, N. F. Youssef, Chem. Pharm. Bull., 51, 1444–1447 (2003).

14. P. Nagaraja, A. K. Shrestha, J. Chem. E, 7, 395–402 (2010).

15. A. Fathima, S. Rao, G. Venkateshwarlu, Int. J. Chem. Tech. Res., 3, 1769–1780 (2011).

16. R. H. Obaydo, A. A. Sakur, J. Anal. Meth. Chem., 1–14 (2019).

17. T. O. Mohammed, A. A. Elbashir, Int. J. Drug Dev. Res., 7, 1–4 (2015).

18. Y. A. Martins, C. L. De Oliveira, J. Appl. Spectr., 86, 629–635 (2019).

19. S. M. Gafar, M. A. El–Kelany, S. R. El–Shawadfy, J. Rad. Res. App. Sci., 11, 190–194 (2018).

20. B. A. Taner, J. AOAC Int., 102, 181–188 (2019).

21. K. Basavaiah, O. Zenita, Quim. Nova., 34, 735–742 (2011).

22. A. F. Alghamdi, A. H. Alghamdi, lwarthan, J. Saudi Chem. Soc., 9, 1–10 (2005).

23. W. J. Barreto, S. R. Barreto, I. S. Scarminio, Quim. Nova., 33, 109–113 (2010).

24. J. Vukovic, S. Matsuoka, K. Yoshimura, Talanta, 71, 2085–2091 (2007).

25. A. Jose, M. J. Murillo, Bull. Soc. Chim. Belg., 99, 315–324 (1990).

26. M. Esteki, S. Nouroozi, Z. Shahsavari, Int. J. Cos. Sci., 38, 1–10 (2015).

27. M. B. Nasirudeen, A. U. Amaechi, Nigeria Sci. World J., 10, 1–5 (2015).

28. B. Jorgovanka, R. Blaga, D. Jasmina, Anal. Sci., 24, 769–774 (2008).

29. M. J. Ahmed, M. T. Chowdhury, Anal. Sci., 20, 987–990 (2004).

30. N. Tiwari, A. Anupama, K. Upadhyay, Res. Chem. Int., 39, 3867–3875 (2013).

31. E. K. Janghel, Y. Pervez, Am. J. Anal. Chem., 2, 726–730 (2011).

32. A. S. Amin, M. A. Kassem, Pharm. Meth., 3, 48–55 (2012).

33. B. T. Alquadeib, Saudi Pharm. J., 27, 66–70 (2019).

34. N. Swamy, K. Basavaiah, P. Vamsikrishna, Pharm. Chem. J., 53, 580–588 (2019).

35. M. Attimarad, K. Narayanaswamy, N. S. Venugopala Harsha, Microchem. J., 152, 104365 (2020).

36. A. F. Alghamdi, Pharm. Chem. J., 48, 843–847 (2015).

37. A. Atanassova, R. Lam, D. B. Zamble, Anal. Biochem., 335, 103–111 (2004).

38. G. Yang, Q. Hu, Z. Huang, J. Braz. Chem. Soc., 16, 1154–1159 (2005).

39. Q. Hu, G. Yang, Y. Zhao, Anal. Bioanal. Chem., 375, 831–835 (2003).

40. M. D. Jamaluddin, I. M. Alakili, Malaysian J. Anal. Sci., 7, 113–120 (2001).

41. G. Okano, S. Igarashi, Y. Yamamoto, Inter. J. Environ. Anal. Chem., 95, 135–144 (2015).

42. G. Xing, M. R. Sardar, B. Lin, Talanta, 204, 50–56 (2019).

43. A. F. Alghamdi, M. M. Hefnawy, Y. El-Shabrawy, Dig. J. Nano. Bios., 9, 355–368 (2014).


Review

For citations:


Alghamdi A.F. Spectrophotometric and liquid chromatographic methods for quantification of antibacterial fluorescent dye (phloxine B) in dental disclosing tablets and toothpaste samples. Zhurnal Prikladnoii Spektroskopii. 2024;91(6):919.

Views: 30


ISSN 0514-7506 (Print)