

QUANTUM CHEMICAL MODELING OF A THREE-COMPONENT SYSTEM CARBOPLATIN– FULLERENOL–QUININE AND ITS DERIVATIVES
Abstract
By means of the quantum chemical modeling within the ORCA 5.03 software package with the HF3c/MINIS/MINIS1+1(d)(Cl)/def2-SV(P)ECP(Pt) level of theory, the electronic structure and binding energy of adducts on the basis of carboplatin, fullerenol, quinine and its esters, as well as their three-component systems were studied. The performed analysis of the total energies of systems and calculated diagrams of the energies of the highest occupied and lowest vacant molecular orbitals of both the initial components and the molecular ensembles they form allowed identifying the most probable combinations of them in terms of stability. Features of synergistic effects have been indicated and prospects for using the three-component system carboplatin–fullerenol C60(OH)24–quinine (or quinine esters) during chemotherapy in oncological practice have been outlined as well.
About the Authors
E. A. DikusarBelarus
Minsk
A. L. Pushkarchuk
Belarus
Minsk
E. A. Akishina
Belarus
Minsk
A. G. Soldatov
Belarus
Minsk
S. A. Kuten
Belarus
Minsk
D. V. Ermak
Belarus
Minsk
T. S. Pivovarchik
Belarus
Minsk
D. B. Migas
Belarus
Minsk
A. P. Nizovtsev
Belarus
Minsk
S. Ya. Kilin
Belarus
Minsk
V. A. Kulchitskiy
Belarus
Minsk
G. K. Mukusheva
Kazakhstan
Karaganda
M. R. Aliyeva
Kazakhstan
Karaganda
H. Zhou
China
Jiaxing
V. I. Potkin
Belarus
Minsk
References
1. S. P. B. Tchounwou. Eur. J. Pharmacol., 5, N 740 (2014) 364—378
2. Е. А. Дикусар, А. Л. Пушкарчук, Т. В. Безъязычная, Е. А. Акишина, А. Г. Солдатов, С. А. Кутень, Д. В. Ермак, Т. С. Пивоварчик, Д. Б. Мигас, С. Г. Стёпин, А. П. Низовцев, С. Я. Килин, В. А. Кульчицкий, Г. К. Мукушева, М. Р. Алиева, В. И. Поткин. Журн. прикл. спектр., 91, № 4 (2024) 564—570 [E. A. Dikusar, A. L. Pushkarchuk, T. V. Bezyazychnaya, E. A. Akishina, A. G. Soldatov, S. A. Kuten, D. V. Ermak, T. S. Pivovarchik, D. B. Migas, S. G. Styopin, A. P. Nizovtsev, S. Ya. Kilin, V. A. Kulchitskiy, G. K. Mukusheva, V. I. Potkin. J. Appl. Spectr., 91, N 4 (2024) 796—802]
3. V. A. Kulchitsky, V. I. Potkin, Y. S. Zubenko, A. N. Chernov, M. V. Talabaev, Y. E. Demidchik, S. K. Petkevich, V. V. Kazbanov, T. A. Gurinovich, M. O. Roeva, D. G. Grigoriev, A. V. Kletskov, V. N. Kalunov. Med. Chem., 8, N 1 (2012) 22—32
4. V. Potkin, A. Pushkarchuk, A. Zamaro, H. Zhou, S. Kilin, S. Petkevich, I. Kolesnik, D. Michels, D. Lyakhov, V. Kulchitsky. Sci. Rep. Nature, 13 (2023) 13624
5. A. Pushkarchuk, T. Bezyazychnaya, V. Potkin, E. Dikusar, A. Soldatov, S. Kilin, A. Nizovtsev, S. Kuten, D. Ermak, V. Pushkarchuk, H. Zhou, V. Kulchitsky. J. Biomed. Res. Environ. Sci., 4, N 2 (2023) 179—183
6. M. V. Putilina, N. V. Teplova. Neurosci. Behav. Physiol., 52, N 8 (2022) 1207—1211
7. D. M. Jonker, S. A. Visser, P. H. van der Graaf, R. A. Voskuyl, M. Danhof. Pharmacol. Ther. Apr., 106, N 1 (2005) 1—18
8. G. K. Mukusheva, A. R. Zhasymbekova, R. B. Seidakhmetova, O. A. Nurkenov, E. A. Akishina, S. K. Petkevich, E. A. Dikusar, V. I. Potkin. Molecules, 27, N 11 (2022) 3476
9. R. Sure, S. Grimme. J. Comp. Chem., 34 (2013) 1672—1685
10. F. Neese. Comp. Mol. Sci., 12 (2022) 1—15
11. Davy Guan, Raymond Lui, Slade T. Matthews. Low-Cost Quantum Mechanical Descriptors for Data Efficient Skin Sensitization QSAR Models Current Research in Toxicology, 7 (2024) 100183
12. Maya Khatun, Sayan Paul, Saikat Roy, Subhasis Dey, Anakuthil Anoop. J. Phys. Chem. A, 127, N 10 (2023) 2242—2257
13. Peter Fürk, Jakob Hofinger, Matiss Reinfelds, Thomas Rath, Heinz Amenitsch, Markus Clark Scharber, Gregor Trimme. Chem. Monthly, 154 (2023) 1369—1381
14. J. Tomasi, B. Mennucci, R. Cammi. Chem. Rev., 105 (2005) 2999—3094
15. Ф. Даниэльс, Р. Олберти. Физическая химия, Москва, Мир (1978)
16. R. Franke. Theoretical Drug Design Method; Elsevier, Amsterdam (1984) 115—123
17. S. P. Gupta, P. Singh, M. C. Bindal. Chem. Rev., 83 (1983) 633
18. Chemcraft — Graphical Software for Visualization of Quantum Chemistry Computations, https://www.chemcraftprog.com
19. K. Fukui, T. Yonezawa, H. Shingu. J. Chem. Phys., 20, N 4 (1952) 722—725
20. D. F. V. Lewis, C. Ioannides, D. V. Parke. Xenobiotica, 24 (1994) 401
21. Mati Karelson, Victor S. Lobanov. Chem. Rev., 96 (1996) 1027—1043
22. M. V. Putz, A. M. Putz. Applications of Density Functional Theory to Biological and Bioinorganic Chemistry, Springer Link, Berlin (2013) 181—231
23. S. Xavier, S. Periandy, S. Ramalingam. Spectrochim. Acta Mol. Biomol. Spectrosc., 137 (2015) 306—320
24. B. Bhattacharya, U. Sarkar. Chem. Phys., 478 (2016) 73—80
Review
For citations:
Dikusar E.A., Pushkarchuk A.L., Akishina E.A., Soldatov A.G., Kuten S.A., Ermak D.V., Pivovarchik T.S., Migas D.B., Nizovtsev A.P., Kilin S.Ya., Kulchitskiy V.A., Mukusheva G.K., Aliyeva M.R., Zhou H., Potkin V.I. QUANTUM CHEMICAL MODELING OF A THREE-COMPONENT SYSTEM CARBOPLATIN– FULLERENOL–QUININE AND ITS DERIVATIVES. Zhurnal Prikladnoii Spektroskopii. 2025;92(1):5-12. (In Russ.)