

DISPERSION OF THE ACOUSTIC WAVES IN ANODIC ALUMINIUM OXIDE PHONONIC CRYSTALS
Abstract
Phononic band gaps of one-dimensional phononic crystals based on porous anodic aluminum oxide were numerically simulated. The spectral position of phononic band gaps of anodic aluminum oxide impregnated with various liquids is determined. Air and liquid filled nanopores display markedly different phonon dispersion relations. Calculations of the dispersion characteristics of samples under study were carried out, the group velocity of phonons, as well as their effective mass, were determined.
About the Authors
S. D. AbdurakhmonovRussian Federation
Moscow
M. S. Ashurov
China
Hangzhou, Zhejiang Province
References
1. C. Croënne, E. J. S. Lee, Hu Hefei, J. H. Page. AIP Adv., 1 (2011) 041401, https://doi.org/10.1063/1.3675797
2. M.-H. Lu, L. Feng, Y.-F. Chen. Mater. Today, 12 (2009) 34, https://doi.org/10.1016/S1369-7021(09)70315-3
3. A. Sato, W. Knoll, Y. Pennec, B. Djafari-Rouhani, G. Fytas, M. Steinhart. J. Chem. Phys., 130 (2009) 111102, https://doi.org/10.1063/1.3096972
4. A. Sato, Y. Pennec, N. Shingne, T. Thurn-Albrecht, W. Knoll, M. Steinhart, B. Djafari-Rouhani, G. Fytas. ACS Nano, 4 (2010) 3471, https://doi.org/10.1021/nn100519h
5. A. Sato, Y. Pennec, T. Yanagishita, H. Masuda, W. Knoll, B. Djafari-Rouhani, G. Fytas. New J. Phys., 14 (2012) 113032, https://doi.org/10.1088/1367-2630/14/11/113032
6. B. Djafari-Rouhani, S. El-Jallal, Y. Pennec. C. R. Phys., 17 (2016) 555, https://doi.org/10.1016/j.crhy.2016.02.001
7. M. Maldovan, E. L. Thomas. Appl. Phys. B, 83 (2006) 595, https://doi.org/10.1007/s00340-006-2241-y
8. A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, M. Bayer. Phys. Rev. Lett., 101 (2008) 033902, https://doi.org/10.1103/PhysRevLett.101.033902
9. T. Gorishnyy, M. Maldovan, C. Ullal, E. L. Thomas. Phys. World, 18 (2005) 24, https://doi.org/10.1088/2058-7058/18/12/30
10. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Nature, 462 (2009) 78, https://doi.org/10.1038/nature08524
11. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Nature, 459 (2009) 550, https://doi.org/10.1038/nature08061
12. I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, V. Laude. Phys. Rev. B, 82 (2010) 174303, https://doi.org/10.1103/PhysRevB.82.174303
13. A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, B. Perrin. Phys. Rev. Lett., 110 (2013) 037403, https://doi.org/10.1103/PhysRevLett.110.037403
14. N. D. Lanzillotti-Kimura, A. Fainstein, A. Lemaitre, B. Jusserand, B. Perrin. Phys. Rev. B, 84 (2011) 115453, https://doi.org/10.1103/PhysRevB.84.115453
15. M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, V. Thierry-Mieg. Phys. Rev. Lett., 89 (2002) 227402, https://doi.org/10.1103/PhysRevLett.89.227402
16. E. Almpanis, N. Papanikolaou, N. Stefanou. Opt. Express, 22 (2014) 31595, https://doi.org/10.1364/OE.22.031595
17. S. D. Abdurakhmonov, M. S. Ashurov, S. O. Klimonsky, N. V. Tcherniega, V. S. Gorelik. Bull. Lebedev Phys. Inst., 49 (2022) 294, https://doi.org/10.3103/S1068335622090020
18. M. Ashurov, V. Gorelik, K. Napolskii, S. Klimonsky. Photon. Sens., 10 (2020) 147, https://doi.org/10.1007/s13320-019-0569-2
19. V. S. Gorelik, S. O. Klimonsky, V. V. Filatov, K. S. Napolskii. Opt. Spectrosc., 120 (2016) 534, https://doi.org/10.1134/S0030400X16040081
20. G. Shang, D. Bi, V. S. Gorelik, G. Fei, L. Zhang. Mater. Today Commun., 34 (2023) 105052, https://doi.org/10.1016/j.mtcomm.2022.105052
21. F. Bertó-Roselló, E. Xifré-Pérez, J. Ferré-Borrull, J. Pallarès, L. F. Marsal. Nanoscale Res. Lett., 11 (2016) 359, https://doi.org/10.1186/s11671-016-1575-6
22. C. Mechri, P. Ruello, V. Gusev. New J. Phys., 14 (2012) 023048, https://doi.org/10.1088/1367-2630/14/2/023048
23. S. E. Kushnir, K. S. Napolskii. Mater. Des., 144 (2018) 140, https://doi.org/10.1016/j.matdes.2018.02.012
24. V. S. Gorelik. Quantum Electron., 37 (2007) 409, https://doi.org/10.1070/QE2007v037n05ABEH013478
25. A. Yariv, P. Yeh. Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley, New York (1984)
26. N. F. Bunkin, V. S. Gorelik, V. V. Filatov. Phys. Wave Phen., 18 (2010) 90, https://doi.org/10.3103/S1541308X10020020
27. D. Lacina, C. Neel. AIP Conf. Proc., 1979 (2018) 030005, https://doi.org/10.1063/1.5044775
28. https://www.engineeringtoolbox.com/sound-speed-liquids-d_715.html
29. Latifa Negadi, B. Feddal-Benabed, I. Bahadur, J. Saab, M. Zaoui-Djelloul-Daouadji, D. Ramjugernath, A. Negadi. J. Chem. Thermodyn., 109 (2017) 124, https://doi.org/10.1016/j.jct.2017.01.011
30. W. Cheng, J. Wang, U. Jonas, G. Fytas, N. Stefanou. Nat. Mater., 5 (2006) 830, https://doi.org/10.1038/nmat1727
31. M. N. Armenise, C. E. Campanella, C. Ciminelli, F. Dell’Olio, V. M. N. Passaro. Phys. Proc., 3 (2010) 357, https://doi.org/10.1016/j.phpro.2010.01.047
Review
For citations:
Abdurakhmonov S.D., Ashurov M.S. DISPERSION OF THE ACOUSTIC WAVES IN ANODIC ALUMINIUM OXIDE PHONONIC CRYSTALS. Zhurnal Prikladnoii Spektroskopii. 2025;92(1):44-50. (In Russ.)