Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

DISPERSION OF THE ACOUSTIC WAVES IN ANODIC ALUMINIUM OXIDE PHONONIC CRYSTALS

Abstract

Phononic band gaps of one-dimensional phononic crystals based on porous anodic aluminum oxide were numerically simulated. The spectral position of phononic band gaps of anodic aluminum oxide impregnated with various liquids is determined. Air and liquid filled nanopores display markedly different phonon dispersion relations. Calculations of the dispersion characteristics of samples under study were carried out, the group velocity of phonons, as well as their effective mass, were determined. 

About the Authors

S. D. Abdurakhmonov
Moscow Polytechnic University
Russian Federation

Moscow



M. S. Ashurov
Westlake University
China

Hangzhou, Zhejiang Province



References

1. C. Croënne, E. J. S. Lee, Hu Hefei, J. H. Page. AIP Adv., 1 (2011) 041401, https://doi.org/10.1063/1.3675797

2. M.-H. Lu, L. Feng, Y.-F. Chen. Mater. Today, 12 (2009) 34, https://doi.org/10.1016/S1369-7021(09)70315-3

3. A. Sato, W. Knoll, Y. Pennec, B. Djafari-Rouhani, G. Fytas, M. Steinhart. J. Chem. Phys., 130 (2009) 111102, https://doi.org/10.1063/1.3096972

4. A. Sato, Y. Pennec, N. Shingne, T. Thurn-Albrecht, W. Knoll, M. Steinhart, B. Djafari-Rouhani, G. Fytas. ACS Nano, 4 (2010) 3471, https://doi.org/10.1021/nn100519h

5. A. Sato, Y. Pennec, T. Yanagishita, H. Masuda, W. Knoll, B. Djafari-Rouhani, G. Fytas. New J. Phys., 14 (2012) 113032, https://doi.org/10.1088/1367-2630/14/11/113032

6. B. Djafari-Rouhani, S. El-Jallal, Y. Pennec. C. R. Phys., 17 (2016) 555, https://doi.org/10.1016/j.crhy.2016.02.001

7. M. Maldovan, E. L. Thomas. Appl. Phys. B, 83 (2006) 595, https://doi.org/10.1007/s00340-006-2241-y

8. A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, M. Bayer. Phys. Rev. Lett., 101 (2008) 033902, https://doi.org/10.1103/PhysRevLett.101.033902

9. T. Gorishnyy, M. Maldovan, C. Ullal, E. L. Thomas. Phys. World, 18 (2005) 24, https://doi.org/10.1088/2058-7058/18/12/30

10. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Nature, 462 (2009) 78, https://doi.org/10.1038/nature08524

11. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Nature, 459 (2009) 550, https://doi.org/10.1038/nature08061

12. I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, V. Laude. Phys. Rev. B, 82 (2010) 174303, https://doi.org/10.1103/PhysRevB.82.174303

13. A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, B. Perrin. Phys. Rev. Lett., 110 (2013) 037403, https://doi.org/10.1103/PhysRevLett.110.037403

14. N. D. Lanzillotti-Kimura, A. Fainstein, A. Lemaitre, B. Jusserand, B. Perrin. Phys. Rev. B, 84 (2011) 115453, https://doi.org/10.1103/PhysRevB.84.115453

15. M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, V. Thierry-Mieg. Phys. Rev. Lett., 89 (2002) 227402, https://doi.org/10.1103/PhysRevLett.89.227402

16. E. Almpanis, N. Papanikolaou, N. Stefanou. Opt. Express, 22 (2014) 31595, https://doi.org/10.1364/OE.22.031595

17. S. D. Abdurakhmonov, M. S. Ashurov, S. O. Klimonsky, N. V. Tcherniega, V. S. Gorelik. Bull. Lebedev Phys. Inst., 49 (2022) 294, https://doi.org/10.3103/S1068335622090020

18. M. Ashurov, V. Gorelik, K. Napolskii, S. Klimonsky. Photon. Sens., 10 (2020) 147, https://doi.org/10.1007/s13320-019-0569-2

19. V. S. Gorelik, S. O. Klimonsky, V. V. Filatov, K. S. Napolskii. Opt. Spectrosc., 120 (2016) 534, https://doi.org/10.1134/S0030400X16040081

20. G. Shang, D. Bi, V. S. Gorelik, G. Fei, L. Zhang. Mater. Today Commun., 34 (2023) 105052, https://doi.org/10.1016/j.mtcomm.2022.105052

21. F. Bertó-Roselló, E. Xifré-Pérez, J. Ferré-Borrull, J. Pallarès, L. F. Marsal. Nanoscale Res. Lett., 11 (2016) 359, https://doi.org/10.1186/s11671-016-1575-6

22. C. Mechri, P. Ruello, V. Gusev. New J. Phys., 14 (2012) 023048, https://doi.org/10.1088/1367-2630/14/2/023048

23. S. E. Kushnir, K. S. Napolskii. Mater. Des., 144 (2018) 140, https://doi.org/10.1016/j.matdes.2018.02.012

24. V. S. Gorelik. Quantum Electron., 37 (2007) 409, https://doi.org/10.1070/QE2007v037n05ABEH013478

25. A. Yariv, P. Yeh. Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley, New York (1984)

26. N. F. Bunkin, V. S. Gorelik, V. V. Filatov. Phys. Wave Phen., 18 (2010) 90, https://doi.org/10.3103/S1541308X10020020

27. D. Lacina, C. Neel. AIP Conf. Proc., 1979 (2018) 030005, https://doi.org/10.1063/1.5044775

28. https://www.engineeringtoolbox.com/sound-speed-liquids-d_715.html

29. Latifa Negadi, B. Feddal-Benabed, I. Bahadur, J. Saab, M. Zaoui-Djelloul-Daouadji, D. Ramjugernath, A. Negadi. J. Chem. Thermodyn., 109 (2017) 124, https://doi.org/10.1016/j.jct.2017.01.011

30. W. Cheng, J. Wang, U. Jonas, G. Fytas, N. Stefanou. Nat. Mater., 5 (2006) 830, https://doi.org/10.1038/nmat1727

31. M. N. Armenise, C. E. Campanella, C. Ciminelli, F. Dell’Olio, V. M. N. Passaro. Phys. Proc., 3 (2010) 357, https://doi.org/10.1016/j.phpro.2010.01.047


Review

For citations:


Abdurakhmonov S.D., Ashurov M.S. DISPERSION OF THE ACOUSTIC WAVES IN ANODIC ALUMINIUM OXIDE PHONONIC CRYSTALS. Zhurnal Prikladnoii Spektroskopii. 2025;92(1):44-50. (In Russ.)

Views: 188


ISSN 0514-7506 (Print)