

SPECTRAL-LUMINESCENT PROPERTIES OF THULIUM AND HOLMIUM COACTIVATED YTTRIUM SESQUIOXIDE CERAMIC
Abstract
The results of investigating the spectral and luminescent characteristics of optical ceramics from thulium and holmium coactivated yttrium sesquioxide (Tm,Ho:Y2O3) are presented. The ceramic samples were fabricated using solid-state vacuum sintering of nano-sized particles with a complex chemical composition synthesized by laser evaporation. The transmittance of Tm,Ho:Y2O3 ceramics in the region of 2 μm exceeds 82 % indicating their high optical quality. The redistribution of line intensities in the luminescence spectra of 3F4→3H6 transitions of Tm3+ ions and 5I7→5I8 transitions of Ho3+ ions observed under excitation of Tm3+ ions to the 3H4 level in ceramics with different Tm3+/Ho3+ balances indicates the occurrence of a nonradiative energy transfer process from 3F4 level of Tm3+ ions to 5I7 level of Ho3+ ions.
About the Authors
R. N. MaksimovRussian Federation
Ekaterinburg
V. A. Shitov
Russian Federation
Ekaterinburg
V. V. Osipov
Russian Federation
Ekaterinburg
E. M. Buzaeva
Russian Federation
Saransk
P. A. Ryabochkina
Russian Federation
Saransk
A. O. Ariskin
Russian Federation
Saransk
References
1. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, M. Richardson. Opt. Laser Technol., 44, N 7 (2012) 2095—2099, https://www.sciencedirect.com/science/article/abs/pii/S0030399212001302
2. K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, N. R. Newbury. J. Opt. Soc. Am. B, 34, N 1 (2017) 104—129, https://opg.optica.org/josab/abstract.cfm?uri=josab-34-1-104
3. O. Traxer, E. X. Keller. World J. Urol., 38, N 8 (2020) 1883—1894, https://pubmed.ncbi.nlm.nih.gov/30729311/
4. F. Silva, S. M. Teichmann, S. L. Cousin, M. Hemmer, J. Biegert. Nature Commun., 6 (2015) 6611, https://www.nature.com/articles/ncomms7611
5. J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, A. Baltuška. Nature Photon., 8 (2014) 927—930, https://www.nature.com/articles/nphoton.2014.256
6. B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, J. Biegert. Phys. Rev. X, 5 (2015) 021034, https://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.021034
7. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisaukas, G. Andriukatis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. HernandezGarcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, H. C. Kapteyn. Science, 336, N 6086 (2012) 1287—1291, https://www.science.org/doi/10.1126/science.1218497
8. P. A. Ryabochkina, A. N. Chabushkin, Yu. L. Kopylov, V. V. Balashov, K. V. Lopukhin. Quantum Electron., 46, N 7 (2016) 597—600, https://iopscience.iop.org/article/10.1070/QEL16084
9. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, F. Díaz. Opt. Express, 22, N 23 (2014) 27976—27984, https://opg.optica.org/oe/fulltext.cfm?uri=oe-22-23-27976&id=303689
10. Y. Zhao, Y. Wang, X. Zhang, X. Mateos, Z. Pan, P. Loiko, W. Zhou, X. Xu, J. Xu, D. Shen, S. Suomalainen, A. Härkönen, M. Guina, U. Griebner, V. Petrov. Opt. Lett., 43, N 4 (2018) 915—918, https://opg.optica.org/ol/abstract.cfm?uri=ol-43-4-915
11. M. Zinkevich. Prog. Mater. Sci., 52, N 4 (2007) 597—647, https://www.sciencedirect.com/science/article/abs/pii/S0079642506000582
12. V. V. Osipov, V. V. Platonov, V. V. Lisenkov, E. V. Tikhonov, A. V. Podkin. Appl. Phys. A, 124 (2018) 3, https://link.springer.com/article/10.1007/s00339-017-1348-9
13. A. A. Kaminskii, K. Ueda, A. F. Konstantinova, H. Yagi, T. Yanagitani, A. V. Butashin, V. P. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, A. Shirokava. Crystallogr. Rep., 48, N 6 (2003) 1041—1043, https://link.springer.com/article/10.1134/1.1627445
14. Y. Liu, X. Qin, L. Gan, G. Zhou, S. Hu, Z. Wang, J. Jiang, T. Zhang, H. Chen. Materials, 17, N 2 (2024) 402, https://www.mdpi.com/1996-1944/17/2/402
15. N. A. Safronova, R. P. Yavetskiy, O. S. Kryzhanovska, M. V. Dobrotvorska, A. E. Balabanov, I. O. Vorona, А. V. Tolmachev, V. N. Baumer, I. Matolínova, D. Yu. Kosyanov, O. O. Shichalin, E. K. Papynov, S. Hau, C. Gheorghe. Ceram. Int., 47, N 1 (2021) 1399—1406, https://www.sciencedirect.com/science/article/abs/pii/S0272884220326651
16. F. S. Liu, B. J. Sun, J. K. Liang, Q. L. Liu, J. Luo, Y. Zhang, L. X. Wang, J. N. Yao, G. H. Rao. J. Solid State Chem., 178, N 4 (2005) 1064—1070, https://www.sciencedirect.com/science/article/abs/pii/S0022459605000137
17. S. A. Artemov, V. V. Balashov, A. N. Chabushkin, O. A. Dmitriev, S. A. Khrushchalina, Yu. L. Kopylov, N. A. Larina, A. A. Lyapin, P. A. Ryabochkina, T. V. Volkova, N. G. Zakharov. Opt. Mater., 101 (2020) 109762, https://www.sciencedirect.com/science/article/abs/pii/S0925346720301130
Review
For citations:
Maksimov R.N., Shitov V.A., Osipov V.V., Buzaeva E.M., Ryabochkina P.A., Ariskin A.O. SPECTRAL-LUMINESCENT PROPERTIES OF THULIUM AND HOLMIUM COACTIVATED YTTRIUM SESQUIOXIDE CERAMIC. Zhurnal Prikladnoii Spektroskopii. 2025;92(1):65-69. (In Russ.)