Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

MAX-PHASE STRUCTURE FORMATION IN COATING AND BULK MATERIAL Ti–Al–N AT HIGH-TEMPERATURE ANNEALING IN VACUUM

Abstract

A comparative study of the structural and phase state of Ti–Al–N systems obtained in the form of a coating and a bulk material is carried out. The methods of X-ray diffraction, energy-dispersive spectroscopy (EDS) and Raman spectroscopy (RS) are used to characterize the structure. The use of EDS and RS makes it possible to verify the X-ray diffraction data on the phase composition of the samples, which is especially important in the study of multiphase Ti–Al–N coatings, and to identify the features of the surface microstructure of the coating. The Ti–Al–N coating is obtained by chemical deposition of Ti and Al in an N2 atmosphere on a Ti substrate with subsequent annealing in vacuum at 700, 800, 900 and 1000 ºС. The bulk Ti–Al– N sample is obtained by reaction sintering of Ti, Al, TiN powders in vacuum at 1200 and 1300ºС. Ti2AlN MAX phase appears in the coating at a lower temperature than in the bulk sample and is characterized by lower thermal stability. Ti–Al–N coating is characterized by a greater multiphase nature; after annealing in vacuum at 900 ºС, the following phases are registered in it: Ti2AlN, Ti4AlN3, TiN, Ti2N, AlN. The destruction of the MAX phase structure occurs at 1000 ºС. In the bulk sample after annealing in vacuum at 1300ºС, the main phase is Ti2AlN with a small admixture of TiN and TiAl, the destruction of the Ti2AlN MAX phase occurs at 1400 ºС. 

About the Authors

E. A. Ovodok
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Minsk



M. I. Ivanovskaya
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Minsk



A. E. Seleznev
Moscow State Technological University “STANKIN”
Russian Federation

Moscow



S. V. Zlotsky
Belarusian State University
Belarus

Minsk



V. V. Uglov
Belarusian State University
Belarus

Minsk



E. Sotova
Moscow State Technological University “STANKIN”
Russian Federation

Moscow



References

1. L. Toth. Transition Metal Carbides and Nitrides, New York-London, Academic Press (1971) 296

2. M. W. Barsoum. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Wiley-VCH Germany (2013) 436

3. J. Gonzalez-Julian. J. Am. Ceram. Soc., 104 (2021) 659—690, https://doi.org/10.1111/jace.17544

4. M. W. Barsoum. Prog. Solid State Chem., 28 (2000) 201—281, doi: 10.1016/S0079-6786(00)00006-6

5. B. Anasori, M. R. Lukatskaya, Y. Gogotsi. Nature Rev. Mater., 2 (2017) 16098(1—16), http://dx.doi.org/10.1038/natrevmats.2016.98

6. M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi. Adv. Mater., 26 (2014) 992—1005, https://doi.org/10.1002/adma.201304138

7. J. Shao, J. Zhang, C. Jiang, J. Lin, P. Huang. Chem. Eng. J., 400 (2020) 126009, https://doi.org/10.1016/j.cej.2020.126009

8. A. Szuplewska, A. Rozmysłowska-Wojciechowska, S. Poźniak, T. Wojciechowski, M. Birowska, M. Popielski, M. Chudy, W. Ziemkowska, L. Chlubny, D. Moszczyńska, A. Olszyna, J. A. Majewski, A. M. Jastrzębska. J. Nanobiotech., 17 (2019) 114, https://doi.org/10.1186/s12951-019-0545-4

9. B. Soundiraraju, B. K. George. ACS Nano, 11 (2017) 8892—8900, https://doi.org/10.1021/acsnano.7b03129

10. S. Akhtar, Sh. Roy, T. Thu Tran, J. Singh, S. Anir Sharbirin, J. Kim. Appl. Sci., 12 (2022) 4154, doi: 10.3390/ app12094154

11. M. Sokol, V. Natu, S. Kota, M. Barsoum. Trends Chem., 1 (2019) 210—223, doi: 10.1016/j.trechm.2019.02.016

12. P. H. Mayrhofer, D. Music, J. M. Schneider. J. Appl. Phys., 100 (2006) 904—906, https://doi.org/10.1063/1.2360778

13. W. Münz. J. Vac. Sci. Technol. A, 4 (1986) 2717—2725, https://doi.org/10.1116/1.573713

14. A. Kimura, H. Hasegawa, K. Yamada, T. Suzuki. Surf. Coat. Technol., 120-121 (1999) 438—441, https://doi.org/10.1016/S0257-8972(99)00491-0

15. P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, C. Mitterer, L. Hultman. Appl. Phys. Lett., 83 (2003) 2049—2051, https://doi.org/10.1063/1.1608464

16. A. Hörling, L. Hultman, M. Odén, J. Sjölén, L. Karlsson. Surf. Coat. Technol., 191 (2005) 384, https://doi.org/10.1016/j.surfcoat.2004.04.056

17. J. Haemers, R. Gusmão, Z. Sofer. Small Methods, 4 (2020) 190780, doi: 10.1002/smtd.201900780

18. P. Eklund, M. Beckers, U. Jansson, H. Högberg, L. Hultman. Thin Solid Film, 518 (2010) 1851—1878, https://doi.org/10.1016/j.tsf.2009.07.184

19. T. Zhang, H. Myoung, D. Shin, K. Kim. J. Ceram. Proc. Res., 13 (2012) 149—153

20. M. Beckers, N. Schell, R. M. S. Martins, A. Mücklich, W. M. L. Hultman. J. Appl. Phys., 99 (2006) 034902, https://doi.org/10.1063/1.2161943

21. W. Garkas, C. Leyens, A. Flores Renteria. Adv. Mater. Res. Vols., 89-91 (2010) 208—213, https://doi.org/10.4028/www.scientific.net/AMR.89-91.208

22. Q. M. Wang, W. Garkas, A. Flores Renteria, C. Leyens, K. H. Kim. J. Nanosci. and Nanotech., 11 (2011) 1—8, https://doi.org/10.1166/jnn.2011.3504

23. C. Höglunda, M. Beckers, N. Schell, J. V. Borany, J. Birch, L. Hultman. Appl. Phys. Lett., 90 (2007) 174106

24. M. Beckers, N. Schell, R. M. S. Martins, A. Mücklich, W. Möller. Appl. Phys. Lett., 89 (2006)074101, https://doi.org/10.1063/1.2335681

25. M. W. Barsoum, T. El-Raghy, A. T. Procopio. Metall. Mater. Trans. A, 31A (2000) 373—378, https://doi.org/10.1007/s11661-000-0273-1

26. M. F. U. Din, C. Yang, Y. Tang, Y. Tian, Y. Luo, Y. Wuy, W. Que. J. Adv. Dielectrics, 9 (2019) 1950008, https://doi.org/10.1142/S2010135X19500085

27. A. V. Linde, A. A. Kondakov, I. A. Studenikin, N. A. Kondakova, V. V. Grachev. Powder Metall. Func. Coatings, 4 (2022) 25—33, https://doi.org/10.17073/1997-308X-2022-4-25-33

28. W. K. Pang, I. M. Low, S. J. Kennedy, R. I. Smith. Mater. Sci. Eng. A, 11 (2010) 137—142, https://doi.org/10.1016/j.msea.2010.08.012

29. I. M. Low, W. K. Pang, S. J. Kennedy, R. I. Smith. J. Eur. Ceram. Soc., 31 (2011) 159—166, https://doi.org/10.1016/j.jeurceramsoc.2010.09.014

30. Z. Zhang, H. Jin, J. Chai, L. Shen, H. L. Seng, J. Pan, L. M. Wong, M. B. Sullivan, S. J. Wang. J. Phys. Chem. C, 118 (2014) 20927—20939, https://doi.org/10.1021/jp505428a

31. M. Beckers, C. Höglund, C. Baehtz, R. M. S. Martins, P. O. Å. Persson, L. Hultman, W. Möller. J. Appl. Phys., 106 (2009) 064915, https://doi.org/10.1063/1.3208065

32. A. Joulain, L. Thilly, J. Rabier. Philos. Mag., 88 (2008) 1307—1320, https://doi.org/10.1080/14786430802126615

33. Q. Chen, B. Sundman. J. Phase Equilibria, 19 (1998) 146—160, https://doi.org/10.1361/105497198770342616

34. V. Presser, M. Naguib, L. Chaput, A. Togo, G. Hugd, M. W. Barsoum. J. Raman Spectrosc., 23 (2012) 168—172, https://doi.org/10.1002/jrs.3036

35. W. Spengler, R. Kaiser. Solid State Commun., 18 (1976) 881—884, https://doi.org/10.1016/0038-1098(76)90228-3

36. C. P. Constable, J. Yarwood, W. D. Munz. Surf. Coatings Technol., 116–119 (1999) 155—159, https://doi.org/10.1016/S0257-8972(99)00072-9

37. M. Franck, J-P. Celis, J. R. Roos. J. Mater. Res., 10 (1995) 119—125, https://doi.org/10.1557/JMR.1995.0119

38. C. J. Rawn, M. W. Barsoum, T. El-Raghy, A. T. Procopio, C. M. Hoffman, C. R. Hubbard. Mater. Res. Bull., 35 (2000) 1785—1796, https://doi.org/10.1016/S0025-5408(00)00383-4

39. . B. Holm, R. Ahuja, S. Li, B. Johansson. J. Appl. Phys., 91 (2002) 9874—9877, https://doi.org/10.1063/1.1476076

40. N. J. Lane, M. Naguib, V. Presser, G. Hug, L. Hultman, M. W. Barsoum. J. Raman Spectrosc., 43 (2011) 954—958, https://doi.org/10.1002/jrs.3101

41. J. E. Spanier, S. Gupta, M. Amer, M. W. Barsoum. Phys. Rev. B, 71 (2005) 012103, https://doi.org/10.1103/PhysRevB.71.012103

42. N. Saoula, S. Djerourou, K. Yahiaoui, K. Henda, R. Kesri, R. M. Erasmusc, J. D.Comins. Surf. Interface Anal., 42 (2010) 1176—1179, https://doi.org/10.1002/sia.3299


Review

For citations:


Ovodok E.A., Ivanovskaya M.I., Seleznev A.E., Zlotsky S.V., Uglov V.V., Sotova E. MAX-PHASE STRUCTURE FORMATION IN COATING AND BULK MATERIAL Ti–Al–N AT HIGH-TEMPERATURE ANNEALING IN VACUUM. Zhurnal Prikladnoii Spektroskopii. 2025;92(1):70-78. (In Russ.)

Views: 135


ISSN 0514-7506 (Print)