

MAX-PHASE STRUCTURE FORMATION IN COATING AND BULK MATERIAL Ti–Al–N AT HIGH-TEMPERATURE ANNEALING IN VACUUM
Abstract
A comparative study of the structural and phase state of Ti–Al–N systems obtained in the form of a coating and a bulk material is carried out. The methods of X-ray diffraction, energy-dispersive spectroscopy (EDS) and Raman spectroscopy (RS) are used to characterize the structure. The use of EDS and RS makes it possible to verify the X-ray diffraction data on the phase composition of the samples, which is especially important in the study of multiphase Ti–Al–N coatings, and to identify the features of the surface microstructure of the coating. The Ti–Al–N coating is obtained by chemical deposition of Ti and Al in an N2 atmosphere on a Ti substrate with subsequent annealing in vacuum at 700, 800, 900 and 1000 ºС. The bulk Ti–Al– N sample is obtained by reaction sintering of Ti, Al, TiN powders in vacuum at 1200 and 1300ºС. Ti2AlN MAX phase appears in the coating at a lower temperature than in the bulk sample and is characterized by lower thermal stability. Ti–Al–N coating is characterized by a greater multiphase nature; after annealing in vacuum at 900 ºС, the following phases are registered in it: Ti2AlN, Ti4AlN3, TiN, Ti2N, AlN. The destruction of the MAX phase structure occurs at 1000 ºС. In the bulk sample after annealing in vacuum at 1300ºС, the main phase is Ti2AlN with a small admixture of TiN and TiAl, the destruction of the Ti2AlN MAX phase occurs at 1400 ºС.
About the Authors
E. A. OvodokBelarus
Minsk
M. I. Ivanovskaya
Belarus
Minsk
A. E. Seleznev
Russian Federation
Moscow
S. V. Zlotsky
Belarus
Minsk
V. V. Uglov
Belarus
Minsk
E. Sotova
Russian Federation
Moscow
References
1. L. Toth. Transition Metal Carbides and Nitrides, New York-London, Academic Press (1971) 296
2. M. W. Barsoum. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Wiley-VCH Germany (2013) 436
3. J. Gonzalez-Julian. J. Am. Ceram. Soc., 104 (2021) 659—690, https://doi.org/10.1111/jace.17544
4. M. W. Barsoum. Prog. Solid State Chem., 28 (2000) 201—281, doi: 10.1016/S0079-6786(00)00006-6
5. B. Anasori, M. R. Lukatskaya, Y. Gogotsi. Nature Rev. Mater., 2 (2017) 16098(1—16), http://dx.doi.org/10.1038/natrevmats.2016.98
6. M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi. Adv. Mater., 26 (2014) 992—1005, https://doi.org/10.1002/adma.201304138
7. J. Shao, J. Zhang, C. Jiang, J. Lin, P. Huang. Chem. Eng. J., 400 (2020) 126009, https://doi.org/10.1016/j.cej.2020.126009
8. A. Szuplewska, A. Rozmysłowska-Wojciechowska, S. Poźniak, T. Wojciechowski, M. Birowska, M. Popielski, M. Chudy, W. Ziemkowska, L. Chlubny, D. Moszczyńska, A. Olszyna, J. A. Majewski, A. M. Jastrzębska. J. Nanobiotech., 17 (2019) 114, https://doi.org/10.1186/s12951-019-0545-4
9. B. Soundiraraju, B. K. George. ACS Nano, 11 (2017) 8892—8900, https://doi.org/10.1021/acsnano.7b03129
10. S. Akhtar, Sh. Roy, T. Thu Tran, J. Singh, S. Anir Sharbirin, J. Kim. Appl. Sci., 12 (2022) 4154, doi: 10.3390/ app12094154
11. M. Sokol, V. Natu, S. Kota, M. Barsoum. Trends Chem., 1 (2019) 210—223, doi: 10.1016/j.trechm.2019.02.016
12. P. H. Mayrhofer, D. Music, J. M. Schneider. J. Appl. Phys., 100 (2006) 904—906, https://doi.org/10.1063/1.2360778
13. W. Münz. J. Vac. Sci. Technol. A, 4 (1986) 2717—2725, https://doi.org/10.1116/1.573713
14. A. Kimura, H. Hasegawa, K. Yamada, T. Suzuki. Surf. Coat. Technol., 120-121 (1999) 438—441, https://doi.org/10.1016/S0257-8972(99)00491-0
15. P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, C. Mitterer, L. Hultman. Appl. Phys. Lett., 83 (2003) 2049—2051, https://doi.org/10.1063/1.1608464
16. A. Hörling, L. Hultman, M. Odén, J. Sjölén, L. Karlsson. Surf. Coat. Technol., 191 (2005) 384, https://doi.org/10.1016/j.surfcoat.2004.04.056
17. J. Haemers, R. Gusmão, Z. Sofer. Small Methods, 4 (2020) 190780, doi: 10.1002/smtd.201900780
18. P. Eklund, M. Beckers, U. Jansson, H. Högberg, L. Hultman. Thin Solid Film, 518 (2010) 1851—1878, https://doi.org/10.1016/j.tsf.2009.07.184
19. T. Zhang, H. Myoung, D. Shin, K. Kim. J. Ceram. Proc. Res., 13 (2012) 149—153
20. M. Beckers, N. Schell, R. M. S. Martins, A. Mücklich, W. M. L. Hultman. J. Appl. Phys., 99 (2006) 034902, https://doi.org/10.1063/1.2161943
21. W. Garkas, C. Leyens, A. Flores Renteria. Adv. Mater. Res. Vols., 89-91 (2010) 208—213, https://doi.org/10.4028/www.scientific.net/AMR.89-91.208
22. Q. M. Wang, W. Garkas, A. Flores Renteria, C. Leyens, K. H. Kim. J. Nanosci. and Nanotech., 11 (2011) 1—8, https://doi.org/10.1166/jnn.2011.3504
23. C. Höglunda, M. Beckers, N. Schell, J. V. Borany, J. Birch, L. Hultman. Appl. Phys. Lett., 90 (2007) 174106
24. M. Beckers, N. Schell, R. M. S. Martins, A. Mücklich, W. Möller. Appl. Phys. Lett., 89 (2006)074101, https://doi.org/10.1063/1.2335681
25. M. W. Barsoum, T. El-Raghy, A. T. Procopio. Metall. Mater. Trans. A, 31A (2000) 373—378, https://doi.org/10.1007/s11661-000-0273-1
26. M. F. U. Din, C. Yang, Y. Tang, Y. Tian, Y. Luo, Y. Wuy, W. Que. J. Adv. Dielectrics, 9 (2019) 1950008, https://doi.org/10.1142/S2010135X19500085
27. A. V. Linde, A. A. Kondakov, I. A. Studenikin, N. A. Kondakova, V. V. Grachev. Powder Metall. Func. Coatings, 4 (2022) 25—33, https://doi.org/10.17073/1997-308X-2022-4-25-33
28. W. K. Pang, I. M. Low, S. J. Kennedy, R. I. Smith. Mater. Sci. Eng. A, 11 (2010) 137—142, https://doi.org/10.1016/j.msea.2010.08.012
29. I. M. Low, W. K. Pang, S. J. Kennedy, R. I. Smith. J. Eur. Ceram. Soc., 31 (2011) 159—166, https://doi.org/10.1016/j.jeurceramsoc.2010.09.014
30. Z. Zhang, H. Jin, J. Chai, L. Shen, H. L. Seng, J. Pan, L. M. Wong, M. B. Sullivan, S. J. Wang. J. Phys. Chem. C, 118 (2014) 20927—20939, https://doi.org/10.1021/jp505428a
31. M. Beckers, C. Höglund, C. Baehtz, R. M. S. Martins, P. O. Å. Persson, L. Hultman, W. Möller. J. Appl. Phys., 106 (2009) 064915, https://doi.org/10.1063/1.3208065
32. A. Joulain, L. Thilly, J. Rabier. Philos. Mag., 88 (2008) 1307—1320, https://doi.org/10.1080/14786430802126615
33. Q. Chen, B. Sundman. J. Phase Equilibria, 19 (1998) 146—160, https://doi.org/10.1361/105497198770342616
34. V. Presser, M. Naguib, L. Chaput, A. Togo, G. Hugd, M. W. Barsoum. J. Raman Spectrosc., 23 (2012) 168—172, https://doi.org/10.1002/jrs.3036
35. W. Spengler, R. Kaiser. Solid State Commun., 18 (1976) 881—884, https://doi.org/10.1016/0038-1098(76)90228-3
36. C. P. Constable, J. Yarwood, W. D. Munz. Surf. Coatings Technol., 116–119 (1999) 155—159, https://doi.org/10.1016/S0257-8972(99)00072-9
37. M. Franck, J-P. Celis, J. R. Roos. J. Mater. Res., 10 (1995) 119—125, https://doi.org/10.1557/JMR.1995.0119
38. C. J. Rawn, M. W. Barsoum, T. El-Raghy, A. T. Procopio, C. M. Hoffman, C. R. Hubbard. Mater. Res. Bull., 35 (2000) 1785—1796, https://doi.org/10.1016/S0025-5408(00)00383-4
39. . B. Holm, R. Ahuja, S. Li, B. Johansson. J. Appl. Phys., 91 (2002) 9874—9877, https://doi.org/10.1063/1.1476076
40. N. J. Lane, M. Naguib, V. Presser, G. Hug, L. Hultman, M. W. Barsoum. J. Raman Spectrosc., 43 (2011) 954—958, https://doi.org/10.1002/jrs.3101
41. J. E. Spanier, S. Gupta, M. Amer, M. W. Barsoum. Phys. Rev. B, 71 (2005) 012103, https://doi.org/10.1103/PhysRevB.71.012103
42. N. Saoula, S. Djerourou, K. Yahiaoui, K. Henda, R. Kesri, R. M. Erasmusc, J. D.Comins. Surf. Interface Anal., 42 (2010) 1176—1179, https://doi.org/10.1002/sia.3299
Review
For citations:
Ovodok E.A., Ivanovskaya M.I., Seleznev A.E., Zlotsky S.V., Uglov V.V., Sotova E. MAX-PHASE STRUCTURE FORMATION IN COATING AND BULK MATERIAL Ti–Al–N AT HIGH-TEMPERATURE ANNEALING IN VACUUM. Zhurnal Prikladnoii Spektroskopii. 2025;92(1):70-78. (In Russ.)