Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

LIGHT ABSORPTION BY A MEDIUM CONTAINING LAYERED SYSTEM FROM MONOLAYERS OF SPHERICAL PARTICLES

Abstract

The approach is developed to describe the optical properties of layered systems (multilayers) consisting of monolayers of spherical particles in a light-absorbing medium. It takes into account multiple scattering of waves in individual monolayers and multiple reflections between monolayers. The amplitude transmission and reflection coefficients of the selected layers of light-absorbing medium containing monolayers of particles are determined in the framework of the recently developed method based on utilizing the quasicrystalline approximation. They are used to calculate coefficients of transmission and reflection of multilayer in the framework of the transfer matrix method. The calculation results are presented for the absorption coefficient of weakly absorbing medium layer containing 1, 4, 8, and 32 monolayers of titanium oxide (TiO2) particles under the incidence of a plane electromagnetic wave along the normal, as applied to the enhancement of the photocatalytic reactions in photochemical microreactors. 

About the Authors

A. A. Miskevich
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



V. A. Loiko
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



N. A. Loiko
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



W. Yang
Dalian University of Technology
China

Dalian



L. Zhang
Dalian University of Technology
China

Dalian



References

1. M. Quinten. Optical Properties of Nanoparticle Systems: Mie and Beyond, Wiley (2011)

2. A. A. Miskevich, V. A. Loiko. J. Quant. Spectr. Rad. Transf., 136 (2014) 58—70

3. J.-Y. Lee, P. Peumans. Opt. Exp., 18 (2010) 10078—10087

4. W. Yang, S. Feng, X. Zhang, Y. Wang, C. Li, L. Zhang, J. Zhao, G. Gurzadyan, S. Tao. ACS Appl. Mater. Interfaces, 13 (2021) 38722—38731

5. U. S. Inan, R. A. Marshall. Numerical Electromagnetics, Cambridge University Press (2011)

6. J. Dong, W. Zhang, L. Liu. Opt. Express, 29 (2021) 7690—7705

7. H. Miyazaki, K. Ohtaka. Phys. Rev. B, 58 (1998) 6920—6937

8. A. Modinos. Physica, 141A (1987) 575—588

9. M. Lax. Phys. Rev., 85 (1952) 621—629

10. K. M. Hong. J. Opt. Soc. Am., 70 (1980) 821—826

11. A. A. Miskevich, V. A. Loiko. J. Exp. Theor. Phys., 113 (2011) 1—13

12. A. García-Valenzuela, E. Gutiérrez-Reyes, R. G. Barrera. J. Opt. Soc. Am. A, 29 (2012) 1161—1179

13. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Opt. Soc. Am. A, 35 (2018) 108—118

14. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Exp. Theor. Phys., 131 (2020) 227—243

15. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Opt. Soc. Am. A, 40 (2023) 682—691

16. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Opt. Soc. Am. A., 41 (2024) 1—10

17. R. A. Dynich, A. D. Zamkovets, A. N. Ponyavina, E. M. Shpilevsky. Proc. Nat. Acad. Sci. Belarus, 55 (2019) 232—241

18. K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma. Nat. Mater., 11 (2012) 1017—1022

19. C. C. Katsidis, D. I. Siapkas. Appl. Opt., 41 (2002) 3978—3987

20. E. Centurioni. Appl. Opt., 44 (2005) 7532—7539

21. M. C. Troparevsky, A. S. Sabau, A. R. Lupini, Z. Zhang. Opt. Exp., 18, N 24 (2010) 24715—24721

22. P. H. C. Camargo, E. Cortés. Plasmonic Catalysis: From Fundamentals to Applications, Wiley (2021)

23. W. Jiang, B. Q. L. Low, R. Long, J. Low, H. Loh, K. Y. Tang, C. H. T. Chai, H. Zhu, H. Zhu, Z. Li, X. J. Loh, Y. Xiong, E. Ye. ACS Nano, 17 (2023) 4193—4229

24. E.-R. Newmeyer, J. D. North, D. F. Swearer. J. Appl. Phys., 132 (2022) 230901

25. Q. Guo, Ch. Li, W. Yang, Y. Yu, Sh. Tao. Adv. Mater. Interfaces, 8 (2021) 2001944

26. A. A. Miskevich, V. A. Loiko. J. Quant. Spectr. Rad. Transf., 146 (2014) 355—364

27. A. A. Miskevich, V. A. Loiko. J. Quant. Spectr. Rad. Transf., 151 (2015) 260—268

28. A. A. Miskevich, V. A. Loiko. J. Quant. Spectr. Rad. Transf., 167 (2015) 23—39

29. J. M. Ziman. Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems, Cambridge University Press (1979)

30. E. D. Palik. Handbook of Optical Constants of Solids, 1, Academic (1985)


Review

For citations:


Miskevich A.A., Loiko V.A., Loiko N.A., Yang W., Zhang L. LIGHT ABSORPTION BY A MEDIUM CONTAINING LAYERED SYSTEM FROM MONOLAYERS OF SPHERICAL PARTICLES. Zhurnal Prikladnoii Spektroskopii. 2025;92(1):92-100. (In Russ.)

Views: 26


ISSN 0514-7506 (Print)